40 research outputs found

    Infantile hypercalcaemia type 1: A vitamin D-mediated, under-recognised cause of hypercalcaemia

    Get PDF
    A 33-year-old gentleman of Egyptian heritage presented with a 21 years history of unexplained and recurrent hypercalcaemia, nephrolithiasis, nephrocalcinosis, and myocarditis. A similar history was also found in two first-degree relatives. Further investigation into the vitamin D metabolism pathway identified the biochemical hallmarks of infantile hypercalcaemia type 1 (IIH). A homozygous, likely pathogenic, variant in CYP24A1 was found on molecular genetic analysis confirming the diagnosis. Management now focuses on removing excess vitamin D from the metabolic pathway as well as reducing calcium intake to achieve serum-adjusted calcium to the middle of the reference range. If undiagnosed, IIH can cause serious renal complications and metabolic bone disease

    The association between overweight/obesity and double diabetes in adults with type 1 diabetes; a cross-sectional study

    Get PDF
    BACKGROUND: Double Diabetes (DD), type 1 diabetes (T1DM) + insulin resistance (IR), is associated with increased risk of micro/macro-vascular complications and mortality. Obesity can contribute to the development of DD. This study explored the prevalence of overweight/obesity and their association with DD in adults with T1DM. METHODS: Cross-sectional study of consecutive adults with T1DM attending diabetes clinics in a secondary care hospital (January-November 2019). Estimated glucose disposal rate (eGDR) was used as a marker of IR, and an eGDR < 8 was used to identify individuals with DD. RESULTS: One hundred seven adults with T1DM were included; female/male: 51/56; age [median (inter-quartile range): 30.0 (23-51) years]; BMI 25.4 (22.8-30.0) kg/m 2. Overweight/obesity prevalence was 57/107 (53.3 %) [overweight: 30/107 (28 %); obesity: 27/107 (25.2 %)]. Compared to those with normal BMI, individuals with T1DM and overweight/obesity had longer diabetes duration; higher total daily insulin dose; and higher DD prevalence: 48/57 (84.2 %) vs. 14/50 (28 %) (p < 0.01); with similar HbA1c. BMI correlated with total daily insulin dose (rho = 0.55; p < 0.01). Individuals with DD were older, had longer duration of diabetes, higher HbA1c, and more adverse lipid profile and microalbuminuria compared to those without DD. CONCLUSIONS: Overweight/obesity is very common in adults with T1DM, and is associated with double diabetes. BMI is positively associated with total insulin dose. Double diabetes is associated with adverse cardiovascular risk profile and is also common in lean individuals with T1DM. Further research is needed to examine the impact of overweight/obesity in people with T1DM and whether weight loss in this population can improve diabetes-related outcomes

    Nuclear factor κB-inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    Get PDF
    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB-inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell-intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity

    Investigation of the relationship between phenylalanine in venous plasma and capillary blood using volumetric blood collection devices

    Get PDF
    Measurement of plasma and dried blood spot (DBS) phenylalanine (Phe) is key to monitoring patients with phenylketonuria (PKU). The relationship between plasma and capillary DBS Phe concentrations has been investigated previously, however, differences in methodology, calibration approach and assumptions about the volume of blood in a DBS sub‐punch has complicated this. Volumetric blood collection devices (VBCDs) provide an opportunity to re‐evaluate this relationship. Paired venous and capillary samples were collected from patients with PKU (n = 51). Capillary blood was collected onto both conventional newborn screening (NBS) cards and VBCDs. Specimens were analysed by liquid‐chromatography tandem mass‐spectrometry (LC–MS/MS) using a common calibrator. Use of VBCDs was evaluated qualitatively by patients. Mean bias between plasma and volumetrically collected capillary DBS Phe was −13%. Mean recovery (SD) of Phe from DBS was 89.4% (4.6). VBCDs confirmed that the volume of blood typically assumed to be present in a 3.2 mm sub‐punch is over‐estimated by 9.7%. Determination of the relationship between plasma and capillary DBS Phe, using a single analytical method, common calibration and VBCDs, demonstrated that once the under‐recovery of Phe from DBS has been taken into account, there is no significant difference in the concentration of Phe in plasma and capillary blood. Conversely, comparison of plasma Phe with capillary DBS Phe collected on a NBS card highlighted the limitations of this approach. Introducing VBCDs for the routine monitoring of patients with PKU would provide a simple, acceptable specimen collection technique that ensures consistent sample quality and produces accurate and precise blood Phe results which are interchangeable with plasma Phe

    Incidental detection of classical galactosemia through newborn screening for phenylketonuria: a 10-year retrospective audit to determine the efficacy of this approach

    Get PDF
    In the UK, Classical Galactosaemia (CG) is identified incidentally from the Newborn Screening (NBS) for phenylketonuria (PKU) using an “Other disorder suspected” (ODS) pathway when phenylalanine (Phe) and tyrosine (Tyr) concentrations are increased. We aimed to determine the efficacy of CG detection via NBS and estimate the incidence of CG in live births in the UK. A survey was sent to all UK NBS laboratories to collate CG cases diagnosed in the UK from 2010 to 2020. Cases of CG diagnosed were determined if detected clinically, NBS, or by family screening, as well as age at diagnosis. Cases referred via the ODS pathway were also collated, including the final diagnosis made. Responses were obtained from 13/16 laboratories. Between 2010 and 2020, a total of 6,642,787 babies were screened, and 172 cases of CG were identified. It should be noted that 85/172 presented clinically, 52/172 were identified by NBS, and 17/172 came from family screening. A total of 117 referrals were made via the ODS pathway, and 45/117 were subsequently diagnosed with CG. Median (interquartile range) age at diagnosis by NBS and clinically was 8 days (7–11) and 10 days (7–16), respectively (Mann–Whitney U test, U = 836.5, p-value = 0.082). The incidence of CG is 1:38,621 live births. The incidence of CG in the UK is comparable with that of other European/western countries. No statistical difference was seen in the timing of diagnosis between NBS and clinical presentation based on the current practice of sampling on day 5. Bringing forward the day of NBS sampling to day 3 would increase the proportion diagnosed with CG by NBS from 52/172 (30.2%) to 66/172 (38.4%)

    Alkylation of the Tumor Suppressor PTEN Activates Akt and β-Catenin Signaling: A Mechanism Linking Inflammation and Oxidative Stress with Cancer

    Get PDF
    PTEN, a phosphoinositide-3-phosphatase, serves dual roles as a tumor suppressor and regulator of cellular anabolic/catabolic metabolism. Adaptation of a redox-sensitive cysteinyl thiol in PTEN for signal transduction by hydrogen peroxide may have superimposed a vulnerability to other mediators of oxidative stress and inflammation, especially reactive carbonyl species, which are commonly occurring by-products of arachidonic acid peroxidation. Using MCF7 and HEK-293 cells, we report that several reactive aldehydes and ketones, e.g. electrophilic α,β-enals (acrolein, 4-hydroxy-2-nonenal) and α,β-enones (prostaglandin A2, Δ12-prostaglandin J2 and 15-deoxy-Δ-12,14-prostaglandin J2) covalently modify and inactivate cellular PTEN, with ensuing activation of PKB/Akt kinase; phosphorylation of Akt substrates; increased cell proliferation; and increased nuclear β-catenin signaling. Alkylation of PTEN by α,β-enals/enones and interference with its restraint of cellular PKB/Akt signaling may accentuate hyperplastic and neoplastic disorders associated with chronic inflammation, oxidative stress, or aging

    Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    Get PDF
    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors
    corecore