7 research outputs found
Détecteur optique Cherenkov de photons 511 keV, rapide et efficace, pour l’imagerie TEP
Positron Emission Tomography (PET) is a nuclear imaging technique widely used in oncology and neuroscience to observe biological activity in the body. Detection of two gamma quanta with the energy 511 keV emitted by positron annihilation in tissues allows one to reconstruct the tracer activity distribution in the body of the patient. Additional measurement of the difference in time detection between the two photons lets us to improve significantly the quality of the reconstructed image (time-of-flight method).In this manuscript, we present the development of two innovative detectors, fast and efficient, used to detect Cherenkov light produced by electrons from the photo-ionization conversions of 511 keV gamma quanta. The first one, intended for use in a brain PET scanner of a high spatial resolution, uses TriMethylBismuth for the detection medium. The second one, planned to be used to construct a whole-body PET scanner, enforces a PbF₂ crystal as Cherenkov radiator. In both configurations a micro-channel photo-multiplier (MCP-PMT) is used to detect Cherenkov photons. We commissioned an electronic detection chain with a time resolution limited to 5 ps (RMS). Using precise MCP-PMT calibration, we were able to develop simultaneously detectors with high efficiency, up to 25 %, and time resolution as good as 200 ps (FWHM).We highlight the limitations of detectors time resolution and suggest several developments in order to improve performances of Cherenkov light detectors.La Tomographie par Emission de Positrons (TEP) est une technique d’imagerie médicale utilisée largement dans le traitement du cancer et dans la recherche neurobiologique, afin d’imager l’activité biologique des organes. Il s’agit de détecter deux photons de 511 keV produits par l’annihilation d’un positron dans les tissus, ce qui permet d’en reconstruire la carte 3D. En mesurant avec une très bonne précision la différence de temps de détection des deux photons, il sera possible d’améliorer la qualité d’image (technique du temps de vol). Dans ce manuscrit, nous présentons le développement de deux détecteurs innovants, rapides et efficaces, pour la détection de la lumière Cherenkov produite par la conversion des photons de 511 keV. Le premier, destiné à un scanner clinique (cerveau) et pré-clinique à haute précision spatiale, utilise comme milieu de détection du TriMéthylBismuth. Le second, pouvant être utilisé pour construire un scanner corps entier, met en œuvre un cristal de PbF₂ comme radiateur Cherenkov. Dans les deux configurations, un photomultiplicateur à micro-canaux (MCP-PMT) est utilisé pour détecter les photons Cherenkov. Notre électronique de détection montre une résolution temporelle limitée à 5 ps (RMS). La chaîne de détection est limitée par les performances du MCP-PMT. Après étalonnage, nous avons mesuré une efficacité de 25 % (grande pour un détecteur Cherenkov), et de résolution temporelle de 200 ps (FWHM).Nous exposons les facteurs limitant la résolution temporelle des détecteurs et proposons des développements qui permettront d’en améliorer les performances
Fast and efficient optical Cherenkov detector for PET
La Tomographie par Emission de Positrons (TEP) est une technique d’imagerie médicale utilisée largement dans le traitement du cancer et dans la recherche neurobiologique, afin d’imager l’activité biologique des organes. Il s’agit de détecter deux photons de 511 keV produits par l’annihilation d’un positron dans les tissus, ce qui permet d’en reconstruire la carte 3D. En mesurant avec une très bonne précision la différence de temps de détection des deux photons, il sera possible d’améliorer la qualité d’image (technique du temps de vol). Dans ce manuscrit, nous présentons le développement de deux détecteurs innovants, rapides et efficaces, pour la détection de la lumière Cherenkov produite par la conversion des photons de 511 keV. Le premier, destiné à un scanner clinique (cerveau) et pré-clinique à haute précision spatiale, utilise comme milieu de détection du TriMéthylBismuth. Le second, pouvant être utilisé pour construire un scanner corps entier, met en œuvre un cristal de PbF₂ comme radiateur Cherenkov. Dans les deux configurations, un photomultiplicateur à micro-canaux (MCP-PMT) est utilisé pour détecter les photons Cherenkov. Notre électronique de détection montre une résolution temporelle limitée à 5 ps (RMS). La chaîne de détection est limitée par les performances du MCP-PMT. Après étalonnage, nous avons mesuré une efficacité de 25 % (grande pour un détecteur Cherenkov), et de résolution temporelle de 200 ps (FWHM).Nous exposons les facteurs limitant la résolution temporelle des détecteurs et proposons des développements qui permettront d’en améliorer les performances.Positron Emission Tomography (PET) is a nuclear imaging technique widely used in oncology and neuroscience to observe biological activity in the body. Detection of two gamma quanta with the energy 511 keV emitted by positron annihilation in tissues allows one to reconstruct the tracer activity distribution in the body of the patient. Additional measurement of the difference in time detection between the two photons lets us to improve significantly the quality of the reconstructed image (time-of-flight method).In this manuscript, we present the development of two innovative detectors, fast and efficient, used to detect Cherenkov light produced by electrons from the photo-ionization conversions of 511 keV gamma quanta. The first one, intended for use in a brain PET scanner of a high spatial resolution, uses TriMethylBismuth for the detection medium. The second one, planned to be used to construct a whole-body PET scanner, enforces a PbF₂ crystal as Cherenkov radiator. In both configurations a micro-channel photo-multiplier (MCP-PMT) is used to detect Cherenkov photons. We commissioned an electronic detection chain with a time resolution limited to 5 ps (RMS). Using precise MCP-PMT calibration, we were able to develop simultaneously detectors with high efficiency, up to 25 %, and time resolution as good as 200 ps (FWHM).We highlight the limitations of detectors time resolution and suggest several developments in order to improve performances of Cherenkov light detectors
Development of the fast and efficient gamma detector using Cherenkov light for TOF-PET
International audienc
Development of the fast and efficient gamma detector using cherenkov light
International audienc
XEMIS2: A liquid xenon Compton camera to image small animals
International audienc
XEMIS2 Liquid Xenon Compton Camera for Small Animal 3γ Medical Imaging: Scintillation Light Measurement
International audienceAn innovative XEnon Medical Imaging System, named XEMIS2, consisting of a liquid xenon (LXe) Compton camera, is developed to image small animal with 3γ imaging technique. The main objective of XEMIS2 involves the 3D localization of a radiopharmaceutical labeled with a specific radionuclide 44 Sc and the lessening of the administered radiotracer activity while preserving the image quality in oncology diagnosis. XEMIS2 is a monolithic single-phase detector with a large axial Field Of View (FOV), handling up to nearly 200 kg of ultra-high-purity liquid xenon. The XEMIS2 facility has been successfully conceived and developed at the SUBATECH laboratory. In XEMIS2, the scintillation signals provide the γ-rays interaction time. Furthermore, it is possible to pre-localize the γ-rays interactions spatially and then achieve the virtual fiducialization of the active volume by matching the scintillation signals with the ionization signals. In order to measure scintillation light, we distribute a set of PhotoMultiplier Tubes (PMTs) around the surface of the active area. Besides, a self-triggered scintillation light detection chain has been specially developed for XEMIS2 to carry out continuous data taking with negligible electronics dead-time. It is currently calibrated in the prototype XEMIS1. The calibration results indicate that the dedicated detection chain has a good performance in scintillation light measurement. XEMIS2 is recently under construction in a small animal medical imaging center CIMA, for further preclinical studies. I. INTRODUCTION OR the past few decades, nuclear medical imaging has extended from organ imaging for tumor localization of a variety of diseases and proven remarkable value in oncology Manuscript receive
Direct Measurement of Ionization Charges in Single-phase Liquid Xenon Compton Telescope for 3γ Medical Imaging
International audienceWe report the study of direct measurement of ionization charges in an innovative liquid xenon Compton camera of small animal imaging, named XEMIS2. It was combined with a novel 3γ medical imaging modality, showing a "TOF-like" PET performance, targeted to reduce the administered activity diametrically while preserving the image quality in oncology diagnosis. For the Compton cones reconstruction, the sequential low energy electronic recoils from Compton scattering of third γray (∼ 1 MeV) are measured directly from ionization signals under a high electric field of 2 kV/cm. The Geant4/NEST simulations studies reveal that the intrinsic energy and spatial resolutions of charges carriers measuring in liquid xenon are dominated respectively by the electron-ion recombination and the abstruse trajectory of recoil electrons. Besides, a novel ASIC front-end electronic, XTRACT, and data acquisition chain were developed, dedicated to optimizing the accuracy and efficiency of ionization signals measurement in XEMIS2. It allows a continuous read-out with ultra-low charges threshold and negligible deadtime per individual channel. The performing characteristics were calibrated in the prototype XEMIS1 under the XEMIS2 operation condition, showing a good homogeneous charge linearity response. Meanwhile, the data processing and analysis were developed, where the charge measurement has been optimized through Monte Carlo simulations. I. INTRODUCTION T HE personalized medicine as the heart of healthcare priorities of the 21 st century requires molecular imag-Manuscrip