6,326 research outputs found

    Single-Layer, Unidirectional, Broadside-Radiating Planar Quadrupole Antenna for 5G IoT Applications

    Get PDF

    Stability analysis of sonic horizons in Bose-Einstein condensates

    Get PDF
    We examine the linear stability of various configurations in Bose-Einstein condensates with sonic horizons. These configurations are chosen in analogy with gravitational systems with a black hole horizon, a white hole horizon and a combination of both. We discuss the role of different boundary conditions in this stability analysis, paying special attention to their meaning in gravitational terms. We highlight that the stability of a given configuration, not only depends on its specific geometry, but especially on these boundary conditions. Under boundary conditions directly extrapolated from those in standard General Relativity, black hole configurations, white hole configurations and the combination of both into a black hole--white hole configuration are shown to be stable. However, we show that under other (less stringent) boundary conditions, configurations with a single black hole horizon remain stable, whereas white hole and black hole--white hole configurations develop instabilities associated to the presence of the sonic horizons.Comment: 14 pages, 7 figures (reduced resolution

    A (p/E) Calculation of Strong Pionic Decays of Baryons

    Get PDF
    Strong pionic decays of baryons are studied in a non-relativistic quark model framework via a convergent (p/E) expansion of the transition operator. Results are compared to the ones obtained within a more conventional (p/m) expansion.Comment: 16 pages, LaTeX, using amssymb.st

    Compact Radio Sources within 30" of Sgr A*: Proper Motions, Stellar Winds and the Accretion Rate onto Sgr A*

    Full text link
    Recent broad-band 34 and 44 GHz radio continuum observations of the Galactic center have revealed 41 massive stars identified with near-IR counterparts, as well as 44 proplyd candidates within 30" of Sgr A*. Radio observations obtained in 2011 and 2014 have been used to derive proper motions of eight young stars near Sgr A*. The accuracy of proper motion estimates based on near-IR observations by Lu et al. and Paumard et al. have been investigated by using their proper motions to predict the 2014 epoch positions of near-IR stars and comparing the predicted positions with those of radio counterparts in the 2014 radio observations. Predicted positions from Lu et al. show an rms scatter of 6 mas relative to the radio positions, while those from Paumard et al. show rms residuals of 20 mas, which is mainly due to uncertainties in the IR-based proper motions. Under the assumption of homogeneous ionized winds, we also determine the mass-loss rates of 11 radio stars, finding rates that are on average \sim2 times smaller than those determined from model atmosphere calculations and near-IR data. Clumpiness of ionized winds would reduce the mass loss rate of WR and O stars by additional factors of 3 and 10, respectively. One important implication of this is a reduction in the expected mass accretion rate onto Sgr A* from stellar winds by nearly an order of magnitude to a value of few×107\times10^{-7} \msol\ yr1^{-1}. Finally, we present the positions of 318 compact 34.5 GHz radio sources within 30\arcs\ of Sgr A*. At least 45 of these have stellar counterparts in the near-IR KsK_s (2.18 μ\mum) and LL' (3.8μ\mum) bands.Comment: 30 pages, 4 figures, ApJ (in press

    Effects of temperature and humidity cycling on the strengths of textile reinforced carbon/epoxy composite materials

    Get PDF
    Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling

    Creating a Student Success Center: Transitioning Graduate Students into an Online Community of Learners through a Collaborative Approach

    Get PDF
    Community building and socialization are key to success in graduate education, particularly as students are facing two new realities at the start of their academic careers: shifting identity into becoming graduate students 2 and scholars, and developing online learning competency. As a way to address these challenges, the EDAD Student Success Center was created in Fall 2016 to increase interactions with faculty and peers as a way to develop a community of learners. This collaborative project included interest and effort from departmental faculty and staff, colleagues from the UNL Libraries, and current graduate students representing the EDAD Graduate Student Association (GSA). As a result, student users described the benefits of the Student Success Center as critical to their success as graduate students. By reducing feelings of isolation, we were able to provide a comprehensive site that helps students feel membership in a learning community and to have access to tools that assist in fostering their educational success. The EDAD Student Success Center was recognized with the 2017 OLC Effective Practice Award. In addition, the presenters have published findings from this collaboration in the May 22, 2017 edition of the EDUCAUSE Review

    Adhesive Joining of Composite Laminates Using Epoxy Resins with Stoichiometric Offset

    Get PDF
    Polymer matrix composites are used in high performance structures because of their excellent specific strength, toughness and stiffness along the fiber. To realize the full performance advantages of composites, complex, built-up structures must be assembled with adhesive, but uncertainty in bond strength requires manufacturers to install bolts or other crack arrest features to ensure safety in critical applications. The inherent uncertainty in adhesive bonds stems from the material discontinuity at the composite-to-adhesive interfaces, which are susceptible to contamination. In contrast, composites made by co-curing, although limited in size and complexity, result in predictable structures that may be certifiable for commercial aviation with reduced dependence on redundant load paths.1 The pro-posed technology uses a stoichiometric offset of the hardener-to-epoxy ratio on the faying surfaces of laminates. Assembly of the components in a subsequent secondary-co-cure process results in a joint with no material discontinuities

    Dealing with Uncertainties in Asteroid Deflection Demonstration Missions: NEOTwIST

    Full text link
    Deflection missions to near-Earth asteroids will encounter non-negligible uncertainties in the physical and orbital parameters of the target object. In order to reliably assess future impact threat mitigation operations such uncertainties have to be quantified and incorporated into the mission design. The implementation of deflection demonstration missions offers the great opportunity to test our current understanding of deflection relevant uncertainties and their consequences, e.g., regarding kinetic impacts on asteroid surfaces. In this contribution, we discuss the role of uncertainties in the NEOTwIST asteroid deflection demonstration concept, a low-cost kinetic impactor design elaborated in the framework of the NEOShield project. The aim of NEOTwIST is to change the spin state of a known and well characterized near-Earth object, in this case the asteroid (25143) Itokawa. Fast events such as the production of the impact crater and ejecta are studied via cube-sat chasers and a flyby vehicle. Long term changes, for instance, in the asteroid's spin and orbit, can be assessed using ground based observations. We find that such a mission can indeed provide valuable constraints on mitigation relevant parameters. Furthermore, the here proposed kinetic impact scenarios can be implemented within the next two decades without threatening Earth's safety.Comment: Accepted for publication in the proceedings of the IAUS 318 - Asteroids: New Observations, New Models, held at the IAU General Assembly in Honolulu, Hawaii, USA 201
    corecore