36 research outputs found

    A Novel Caloric Restriction-Like Mimetic Affects Longevity in Yeast by Reprogramming Core Metabolic Pathways

    Get PDF
    Glucose limitation is a simple intervention that extends yeast replicative lifespan (RLS) via the same pathway(s) thought to mediate the benefits of caloric restriction (CR) in mammals. Here we report on “C1”, a small molecule that mimics key aspects of CR. C1 was identified in a high throughput screen for drug-like molecules that reverse the RLS shortening effect of the sirtuin inhibitor and NAD+ precursor nicotinamide. C1 reduces the cellular dependence on glycolysis and the pentose phosphate pathway, even in the presence of glucose, and compensates by elevating fatty acid -oxidation to maintain acetyl-CoA levels. C1 acts either downstream of Sir2 or in an independent CR pathway. In this regard, chemical-genetic interactions indicate that C1 influences Tor2 signaling via effects on phosphoinositide pools. Key activities of C1 extend to mammals. C1 stimulates -oxidation in mammalian cells, and in mice, reduces levels of triacylglycerides and cholesterol in livers of lean and obese mice. C1 confers oxidative resistance to diamide in both yeast and mammalian cells. In conclusion, C1 induces global changes in metabolism in yeast and mammalian cells that mimic aspects of CR. Future work will be aimed at identifying the cellular target of C1

    ASIME 2018 White Paper. In-Space Utilisation of Asteroids: Asteroid Composition -- Answers to Questions from the Asteroid Miners

    Full text link
    In keeping with the Luxembourg government's initiative to support the future use of space resources, ASIME 2018 was held in Belval, Luxembourg on April 16-17, 2018. The goal of ASIME 2018: Asteroid Intersections with Mine Engineering, was to focus on asteroid composition for advancing the asteroid in-space resource utilisation domain. What do we know about asteroid composition from remote-sensing observations? What are the potential caveats in the interpretation of Earth-based spectral observations? What are the next steps to improve our knowledge on asteroid composition by means of ground-based and space-based observations and asteroid rendez-vous and sample return missions? How can asteroid mining companies use this knowledge? ASIME 2018 was a two-day workshop of almost 70 scientists and engineers in the context of the engineering needs of space missions with in-space asteroid utilisation. The 21 Questions from the asteroid mining companies were sorted into the four asteroid science themes: 1) Potential Targets, 2) Asteroid-Meteorite Links, 3) In-Situ Measurements and 4) Laboratory Measurements. The Answers to those Questions were provided by the scientists with their conference presentations and collected by A. Graps or edited directly into an open-access collaborative Google document or inserted by A. Graps using additional reference materials. During the ASIME 2018, first day and second day Wrap-Ups, the answers to the questions were discussed further. New readers to the asteroid mining topic may find the Conversation boxes and the Mission Design discussions especially interesting.Comment: Outcome from the ASIME 2018: Asteroid Intersections with Mine Engineering, Luxembourg. April 16-17, 2018. 65 Pages. arXiv admin note: substantial text overlap with arXiv:1612.0070

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets

    Get PDF
    The pancreatic beta cell is unique in its response to nutrient by increased fuel oxidation. Recent studies have demonstrated that oxygen consumption rate (OCR) may be a valuable predictor of islet quality and long term nutrient responsiveness. To date, high-throughput and user-friendly assays for islet respiration are lacking. The aim of this study was to develop such an assay and to examine bioenergetic efficiency of rodent and human islets.The XF24 respirometer platform was adapted to islets by the development of a 24-well plate specifically designed to confine islets. The islet plate generated data with low inter-well variability and enabled stable measurement of oxygen consumption for hours. The F1F0 ATP synthase blocker oligomycin was used to assess uncoupling while rotenone together with myxothiazol/antimycin was used to measure the level of non-mitochondrial respiration. The use of oligomycin in islets was validated by reversing its effect in the presence of the uncoupler FCCP. Respiratory leak averaged to 59% and 49% of basal OCR in islets from C57Bl6/J and FVB/N mice, respectively. In comparison, respiratory leak of INS-1 cells and C2C12 myotubes was measured to 38% and 23% respectively. Islets from a cohort of human donors showed a respiratory leak of 38%, significantly lower than mouse islets.The assay for islet respiration presented here provides a novel tool that can be used to study islet mitochondrial function in a relatively high-throughput manner. The data obtained in this study shows that rodent islets are less bioenergetically efficient than human islets as well as INS1 cells

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    A Novel Caloric Restriction-Like Mimetic Affects Longevity in Yeast by Reprogramming Core Metabolic Pathways

    No full text
    Glucose limitation is a simple intervention that extends yeast replicative lifespan (RLS) via the same pathway(s) thought to mediate the benefits of caloric restriction (CR) in mammals. Here we report on “C1”, a small molecule that mimics key aspects of CR. C1 was identified in a high throughput screen for drug-like molecules that reverse the RLS shortening effect of the sirtuin inhibitor and NAD+ precursor nicotinamide. C1 reduces the cellular dependence on glycolysis and the pentose phosphate pathway, even in the presence of glucose, and compensates by elevating fatty acid -oxidation to maintain acetyl-CoA levels. C1 acts either downstream of Sir2 or in an independent CR pathway. In this regard, chemical-genetic interactions indicate that C1 influences Tor2 signaling via effects on phosphoinositide pools. Key activities of C1 extend to mammals. C1 stimulates -oxidation in mammalian cells, and in mice, reduces levels of triacylglycerides and cholesterol in livers of lean and obese mice. C1 confers oxidative resistance to diamide in both yeast and mammalian cells. In conclusion, C1 induces global changes in metabolism in yeast and mammalian cells that mimic aspects of CR. Future work will be aimed at identifying the cellular target of C1
    corecore