371 research outputs found

    Exciton Control in a Room-Temperature Bulk Semiconductor with Coherent Strain Pulses

    Get PDF
    The coherent manipulation of excitons in bulk semiconductors via the lattice degrees of freedom is key to the development of acousto-optic and acousto-excitonic devices. Wide-bandgap transition metal oxides exhibit strongly bound excitons that are interesting for applications in the deep-ultraviolet, but their properties have remained elusive due to the lack of efficient generation and detection schemes in this spectral range. Here, we perform ultrafast broadband deep-ultraviolet spectroscopy on anatase TiO2_2 single crystals at room temperature, and reveal a dramatic modulation of the exciton peak amplitude due to coherent acoustic phonons. This modulation is comparable to those of nanostructures where exciton-phonon coupling is enhanced by quantum confinement, and is accompanied by a giant exciton shift of 30-50 meV. We model these results by many-body perturbation theory and show that the deformation potential coupling within the nonlinear regime is the main mechanism for the generation and detection of the coherent acoustic phonons. Our findings pave the way to the design of exciton control schemes in the deep-ultraviolet with propagating strain pulses

    Long term continuous radon monitoring in a seismically active area

    Get PDF
    We present the results of a long term, continuous radon monitoring experiment started in April 2010 in a seismically active area, affected during the 2010-2013 data acquisition time window by an intense micro seismic activity and by several small seismic events. We employed both correlation and cross-correlation analyses in order to investigate possible relationship existing between the collected radon data, seismic events and meteorological parameters. Our results do not support the feasibility of a robust one-to-one association between the small magnitude earthquakes characterizing the local seismic activity and single radon measurement anomalies, but evidence significant correlation patterns between the spatio-temporal variations of seismic moment release and soil radon emanations, the latter being anyway dominantly modulated by meteorological parameters variations

    New insights on the Messina 1908 seismic source from post-seismic sea level change

    Get PDF
    The identification of a source model for the catastrophic 1908 December 28 Messina earth- quake (Mw = 7.2) has been the subject of many papers in the last decades. Several authors proposed different models on the basis of seismological, macroseismic and geodetic data sets; among these models, remarkable differences exist with regard to almost all parameters. We selected a subset of six models among those most cited in literature and used them to model the post-seismic sea level variation recorded at the tide gauge station of Messina (until 1923), to attempt an independent discrimination among them. For each model, we assumed a simple rheological structure and carried out a direct-search inversion of upper crust thickness and lower crust viscosity to fit the post-seismic sea level signal. This approach enabled us to iden- tify a class of fault geometries which is consistent with the post-seismic signal at the Messina tide gauge and with the known structural and rheological features of the Messina strai

    Post-seismic stress relaxation with a linear transient rheology

    Get PDF
    We performed an analysis of post-seismic stress relaxation, taking into account generalized linear rheologies. We compared the stress field (and its derived functions) obtained with a classical Maxwell rheology with that obtained with a transient Burgers body. From a set of synthetic case studies, we have revealed quantitative and qualitative differences both in relaxation times and in local stress values when a transient rheology is introduced. As a practical application, we modeled the time evolution of the Coulomb failure function following the 2009 L'Aquila earthquake, and we show that a transient rheology can lead to non-monotonic time dependence

    Asynchronous optimization over graphs: linear convergence under error bound conditions

    Get PDF
    We consider convex and nonconvex constrained optimization with a partially separable objective function: agents minimize the sum of local objective functions, each of which is known only by the associated agent and depends on the variables of that agent and those of a few others. This partitioned setting arises in several applications of practical interest. We propose the first distributed, asynchronous algorithm with rate guarantees for this class of problems. When the objective function is nonconvex, the algorithm provably converges to a stationary solution at a sublinear rate whereas linear rate is achieved under the renowned Luo-Tseng error bound condition (which is less stringent than strong convexity). Numerical results on matrix completion and LASSO problems show the effectiveness of our metho

    Application of the Post-Widder Laplace inversion algorithm to postseismic rebound models

    Get PDF
    The postseismic response of a viscoelastic Earth can be computed analytically with a normal-mode approach, based on the application of propagator methods. This framework suffers from many limitations, mostly connected with the solution of the secular equation, whose degree scales with the number of viscoelastic layers so that only low-resolution models can be practically solved. Recently, a viable alternative to the normal-mode approach has been proposed, based on the Post-Widder inversion formula. This method allows to overcome some of the intrinsic limitations of the normal-mode approach, so that Earth models with arbitrary radial resolution can be employed and general linear non-Maxwell rheologies can be implemented. In this work, we test the robustness of the method against a standard normal-mode approach in order to optimize computation performance while ensuring the solution stability. As an application, we address the issue of finding the minimum number of layers with distinct elastic properties needed to accurately describe the postseismic relaxation of a realistic Earth model

    Modellizzazione di un convertitore Stirling Free-Piston per applicazioni spaziali

    Get PDF
    Il presente lavoro di tesi vuol proporre un metodo lineare di modellizzazione matematica, che descriva il comportamento di un moderno convertitore Stirling a pistoni liberi, un dispositivo che sta collezionando larghi consensi nel campo della generazione di potenza elettrica. Il suo utilizzo sta interessando in modo crescente applicazioni particolari come quelle spaziali, nelle quali alta affidabilità e scarsa manutenzione sono requisiti di primaria importanza. L’obbiettivo che questa tesi si propone è analizzare la complicata sinergia di tutti i processi termodinamici (e dinamici), che caratterizzano il funzionamento di un dispositivo di questo tipo. Successivamente si cerca di creare uno strumento in grado di fornire indicazioni valide riguardo all’influenza esercitata sul funzionamento del motore dai vari parametri fisici, geometrici e ambientali. Basandosi sull’architettura dei recenti prototipi realizzati negli Stati Uniti per conto di NASA, e sui risultati ottenuti da precedenti lavori sull’argomento, si realizza quindi un sistema di equazioni linearizzate per la descrizione di ogni componente del motore. Tale sistema viene poi inserito in una simulazione temporale, con l’intento di confrontare i risultati ottenuti con le misurazioni sperimentali. Dimostrata la validità del modello, se ne valuta, tramite uno studio parametrico, la capacità di predire le prestazioni della macchina sotto diverse condizioni operative, così da catturare gli aspetti fondamentali che caratterizzano questa particolare tecnologia, così da potersene servire in un’eventuale successiva fase di progetto

    Post-seismic stress relaxation with a linear transient rheology

    Get PDF
    We performed an analysis of post-seismic stress relaxation, taking into account generalized linear rheologies. We compared the stress field (and its derived functions) obtained with a classical Maxwell rheology with that obtained with a transient Burgers body. From a set of synthetic case studies, we have revealed quantitative and qualitative differences both in relaxation times and in local stress values when a transient rheology is introduced. As a practical application, we modeled the time evolution of the Coulomb failure function following the 2009 L'Aquila earthquake, and we show that a transient rheology can lead to non-monotonic time dependence
    • …
    corecore