82 research outputs found

    A structure in the early Universe at z 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology

    Get PDF
    A Large Quasar Group (LQG) of particularly large size and high membership has been identified in the DR7QSO catalogue of the Sloan Digital Sky Survey. It has characteristic size (volume^1/3) ~ 500 Mpc (proper size, present epoch), longest dimension ~ 1240 Mpc, membership of 73 quasars, and mean redshift = 1.27. In terms of both size and membership it is the most extreme LQG found in the DR7QSO catalogue for the redshift range 1.0 = 1.28, which is itself one of the more extreme examples. Their boundaries approach to within ~ 2 deg (~ 140 Mpc projected). This new, huge LQG appears to be the largest structure currently known in the early universe. Its size suggests incompatibility with the Yadav et al. scale of homogeneity for the concordance cosmology, and thus challenges the assumption of the cosmological principle

    Compatibility of the large quasar groups with the concordance cosmological model

    Get PDF
    We study the compatibility of large quasar groups with the concordance cosmological model. Large quasar groups are very large spatial associations of quasars in the cosmic web, with sizes of 50–250 h−1 Mpc. In particular, the largest large quasar group known, named Huge-LQG, has a longest axis of ∼860 h−1 Mpc, larger than the scale of homogeneity (∼260 Mpc), which has been noted as a possible violation of the cosmological principle. Using mock catalogues constructed from the Horizon Run 2 cosmological simulation, we found that large quasar groups size, quasar member number and mean overdensity distributions in the mocks agree with observations. The Huge-LQG is found to be a rare group with a probability of 0.3 per cent of finding a group as large or larger than the observed, but an extreme value analysis shows that it is an expected maximum in the sample volume with a probability of 19 per cent of observing a largest quasar group as large or larger than Huge-LQG. The Huge-LQG is expected to be the largest structure in a volume at least 5.3 ± 1 times larger than the one currently studied

    Properties of high-z galaxies as seen through lensing clusters

    Get PDF
    We discuss the first results obtained on the study of a sample of high-z galaxies (2 < z < 7), using the gravitational amplification effect in the core of lensing clusters. Sources are located close to the critical lines in clusters with well constrained mass distributions, and selected through photometric redshifts, computed on a large wavelength domain, and lens inversion techniques.Comment: 5 pages, 3 figures, Conference Proceedings of the "Clustering at High Redshift" Conference, June 29 to July 2, 1999, Marseille (France

    Gemini and Chandra observations of Abell 586, a relaxed strong-lensing cluster

    Full text link
    We analyze the mass content of the massive strong-lensing cluster Abell 586 (z=0.17z = 0.17). We use optical data (imaging and spectroscopy) obtained with the Gemini Multi-Object Spectrograph (GMOS) mounted on the 8-m Gemini-North telescope, together with publicly available X-ray data taken with the \textit{Chandra} space telescope. Employing different techniques -- velocity distribution of galaxies, weak gravitational lensing, and X-ray spatially resolved spectroscopy -- we derive mass and velocity dispersion estimates from each of them. All estimates agree well with each other, within a 68% confidence level, indicating a velocity dispersion of 1000 -- 1250 \kms. The projected mass distributions obtained through weak-lensing and X-ray emission are strikingly similar, having nearly circular geometry. We suggest that Abell 586 is probably a truly relaxed cluster, whose last major merger occurred more than 4\sim 4 Gyr agoComment: ApJ accepted, 20 pages, 11 figures; Figure 1 fixe

    DESULFURACIÓN DE RELAVE MEDIANTE LA FLOTACIÓN DE SULFUROS DE HIERRO

    Get PDF
    En Chile la minería se desarrolla principalmente en  la concentración de cobre, molibdeno, oro y plata, mediante el proceso de flotación. Este genera grandes tonelajes de relaves que contienen diversas minerales, principalmente pirita. Dado que estos minerales se depositan en los tranques, estos pueden generar aguas ácidas; se propone como alternativa la desulfuración de los súlfuros por flotación. En una primera parte se estudió la flotabilidad de la pirita en un tubo Hallimond, utilizando como colector AP 404. Luego se realizaron pruebas de flotación a nivel de laboratorio en celda Denver D-12, utilizando pulpa de relave fresco de la etapa rougher de un circuito de flotación de cobre,  determinando el pH óptimo y dosificación de colector y espumantes. Pruebas de cinética de flotación permitieron determinar el tiempo óptimo de flotación tanto para la etapa rougher como  para la etapa scavenger. Se concluye que la flotación de los relaves sea una técnicamente factible su desulfuración,  obteniendo relaves que contienen  0,08% de pirita

    Ultraviolet Fe II Emission in Fainter Quasars: Luminosity Dependences, and the Influence of Environments

    Get PDF
    We investigate the strength of ultraviolet Fe II emission in fainter quasars com- pared with brighter quasars for 1.0 :( z :( 1.8, using the SDSS (Sloan Digital Sky Survey) DR7QSO catalogue and spectra of Schneider et al., and the SFQS (SDSS Faint Quasar Survey) catalogue and spectra of Jiang et al. We quantify the strength of the UV Fe II emission using the W 2400 equivalent width of Weymann et al., which is defined between two rest-frame continuum windows at 2240–2255 and 2665–2695 ˚A. The main results are the following. (1) We find that for W 2400 2: 25 ˚A there is a universal (i.e. for quasars in general) strengthening of W 2400 with decreasing intrinsic luminosity, L3000. (2) In conjunction with previous work by Clowes et al., we find that there is a further, differential, strengthening of W 2400 with decreasing L3000 for those quasars that are members of Large Quasar Groups (LQGs). (3) We find that increasingly strong W 2400 tends to be associated with decreasing FWHM of the neighbouring Mg II λ2798 broad emission line. (4) We suggest that the dependence of W 2400 on L3000 arises from Lyα fluorescence. (5) We find that stronger W 2400 tends to be associated with smaller virial estimates from Shen et al. of the mass of the central black hole, by a factor ∼ 2 between the ultrastrong emitters and the weak. Stronger W 2400 emission would correspond to smaller black holes that are still growing. The differential effect for LQG members might then arise from preferentially younger quasars in the LQG environments

    Seeking the Local Convergence Depth. V. Tully-Fisher Peculiar Velocities for 52 Abell Clusters

    Full text link
    We have obtained I band Tully-Fisher (TF) measurements for 522 late-type galaxies in the fields of 52 rich Abell clusters distributed throughout the sky between 50 and 200\h Mpc. Here we estimate corrections to the data for various forms of observational bias, most notably Malmquist and cluster population incompleteness bias. The bias-corrected data are applied to the construction of an I band TF template, resulting in a relation with a dispersion of 0.38 magnitudes and a kinematical zero-point accurate to 0.02 magnitudes. This represents the most accurate TF template relation currently available. Individual cluster TF relations are referred to the average template relation to compute cluster peculiar motions. The line-of-sight dispersion in the peculiar motions is 341+/-93 km/s, in general agreement with that found for the cluster sample of Giovanelli and coworkers.Comment: 31 pages, 14 figures, uses AAS LaTeX; to appear in the Astronomical Journa

    Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    Full text link
    The Atacama B-Mode Search (ABS) instrument is a cryogenic (\sim10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the Cosmic Microwave Background (CMB) at large angular scales (40<<50040<\ell<500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at 100\ell \sim100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer (OMT) and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1/f1/f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.Comment: 7 pages, 3 figures, conference proceedings submitted to the Journal of Low Temperature Detector
    corecore