692 research outputs found
Recommended from our members
Isolated Taylor Bubbles in Co-Current with Shear Thinning CMC Solutions in Microchannels—A Numerical Study
Slug flow is a multiphase flow pattern characterized by the occurrence of long gas bubbles (Taylor bubbles) separated by liquid slugs. This multiphase flow regime is present in many and diversified natural and industrial processes, at macro and microscales, such as in eruption of volcanic magmas, oil recovery from pre-salt regions, micro heat exchangers, and small-sized refrigerating systems. Previous studies in the literature have been mostly focused on tubular gas bubbles flowing in Newtonian liquids. In this work, results from several numerical simulations of tubular gas bubbles flowing in a shear thinning liquid in microchannels are reported. To simulate the shear thinning behavior, carboxymethylcellulose (CMC) solutions with different concentrations were considered. The results are compared with data from bubbles flowing in Newtonian liquids in identical geometric and dynamic conditions. The numerical work was carried out in computational fluid dynamics (CFD) package Ansys Fluent (release 16.2.0) employing the volume of fluid (VOF) methodology to track the volume fraction of each phase and the continuum surface force (CSF) model to insert the surface tension effects. The flow patterns, the viscosity distribution in the liquid, the liquid film thickness between the bubble and the wall, and the bubbles shape are analyzed for a wide range of shear rates. In general, the flow patterns are similar to those in Newtonian liquids, but in the film, where a high viscosity region is observed, the thickness is smaller. Bubble velocities are smaller for the non-Newtonian cases.</jats:p
Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle
Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(−/−) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling
Proteomics: in pursuit of effective traumatic brain injury therapeutics
Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients
Condições de vida e vocabulário receptivo em crianças de dois a cinco anos
OBJECTIVE: To assess the receptive vocabulary of children aged between two years and six months and five years and eleven months who were attending childcare centers and kindergarten schools. METHODS: An analytical cross-sectional study was carried out in the municipality of Embu, Southeastern Brazil. The Peabody Picture Vocabulary Test and analysis of factors associated with children's performance were applied. The sample consisted of 201 children of both genders, aged between two and six years. Statistical analysis was performed using multivariate analysis and logistic regression model. The dependent variable analyzed was test performance and the independent variables were child's age, mother's level of education and family socio-demographic characteristics. RESULTS: It was observed that 44.3% of the children had performances in the test that were below what would be expected for their age. The factors associated with the best performances in the test were child's age (OR=2.4; 95% CI: 1.6-3.5) and mother's education level (OR= 3.2; 95% CI: 1.3-7.4). CONCLUSIONS: Mother's education level is important for child's language development. Settings such as childcare and kindergarten schools are protective factors for child development in families of low income and education.OBJETIVO: Avaliar o vocabulário receptivo de crianças de dois anos e seis meses a cinco anos e 11 meses que freqüentam creches e pré-escolas. MÉTODOS: Estudo transversal e analítico realizado no município de Embu, Estado de São Paulo. Utilizou-se o Teste de Vocabulário por Imagem Peabody e análise de fatores associados ao desempenho. A amostra foi constituída de 201 crianças de ambos os sexos, com idade entre dois e seis anos. Foram realizados análise multivariada e modelo de regressão logística. A variável dependente analisada foi o desempenho no teste e as variáveis independentes foram a idade da criança, tempo de escolaridade e série, e características sociodemográficas de suas famílias. RESULTADOS: Observou-se que 44,3% das crianças apresentaram desempenho inferior ao esperado para a idade no teste e os fatores associados ao melhor desempenho foram a idade da criança (OR=2,4; IC 95%: 1,6-3,5) e a escolaridade materna (OR=3,2; IC 95%: 1,3-7,4). CONCLUSÕES: A escolaridade maternal é importante no desenvolvimento de linguagem da criança. As instituições como creches e pré- escolas são fatores de proteção do desenvolvimento infantil em famílias de baixa renda e com baixa escolaridade.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FonoaudiologiaUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de PediatriaUNIFESP, EPM, Depto. de FonoaudiologiaUNIFESP, EPM, Depto. de PediatriaSciEL
Effects of temperature on thick branes and the fermion (quasi-)localization
Following Campos's work [Phys. Rev. Lett. 88, 141602 (2002)], we investigate
the effects of temperature on flat, de Sitter (dS), and anti-de Following
Campos's work [Phys. Rev. Lett. \textbf{88}, 141602 (2002)], we investigate the
effects of temperature on flat, de Sitter (dS), and anti-de Sitter (AdS) thick
branes in five-dimensional (5D) warped spacetime, and on the fermion
(quasi-)localization. First, in the case of flat brane, when the critical
temperature reaches, the solution of the background scalar field and the warp
factor is not unique. So the thickness of the flat thick brane is uncertain at
the critical value of the temperature parameter, which is found to be lower
than the one in flat 5D spacetime. The mass spectra of the fermion Kaluza-Klein
(KK) modes are continuous, and there is a series of fermion resonances. The
number and lifetime of the resonances are finite and increase with the
temperature parameter, but the mass of the resonances decreases with the
temperature parameter. Second, in the case of dS brane, we do not find such a
critical value of the temperature parameter. The mass spectra of the fermion KK
modes are also continuous, and there is a series of fermion resonances. The
effects of temperature on resonance number, lifetime, and mass are the same
with the case of flat brane. Last, in the case of AdS brane, {the critical
value of the temperature parameter can less or greater than the one in the flat
5D spacetime.} The spectra of fermion KK modes are discrete, and the mass of
fermion KK modes does not decrease monotonically with increasing temperature
parameter.Comment: 24 pages, 15 figures, published versio
Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams
The present study addresses the effect of heat stress on males' reproduction ability. For that, we have evaluated the sperm DNA fragmentation (DFI) by SCSA of ejaculates incubated at 37°C during 0, 24 and 48 hours after its collection, as a way to mimic the temperature circumstances to which spermatozoa will be subject to in the ewe uterus. The effects of temperature and temperature-humidity index (THI) from day 60 prior collection to the date of semen collection on DFI were examined. To better understand the causes determining the sensitivity of spermatozoa to heat, this study was conducted in 60 males with alternative genotypes for the SNP G/C−660 of the HSP90AA1 promoter, which encode for the Hsp90α protein. The Hsp90α protein predominates in the brain and testis, and its role in spermatogenesis has been described in several species. Ridge regression analyses showed that days 29 to 35 and 7 to 14 before sperm collection (bsc) were the most critical regarding the effect of heat stress over DFI values. Mixed model analyses revealed that DFI increases over a threshold of 30°C for maximum temperature and 22 for THI at days 29 to 35 and 7 to 14 bsc only in animals carrying the GG−660 genotype. The period 29–35 bsc coincide with the meiosis I process for which the effect of the Hsp90α has been described in mice. The period 7–14 bsc may correspond with later stages of the meiosis II and early stages of epididymal maturation in which the replacement of histones by protamines occurs. Because of GG−660 genotype has been associated to lower levels of HSP90AA1 expression, suboptimal amounts of HSP90AA1 mRNA in GG−660 animals under heat stress conditions make spermatozoa DNA more susceptible to be fragmented. Thus, selecting against the GG−660 genotype could decrease the DNA fragmentation and spermatozoa thermal susceptibility in the heat season, and its putative subsequent fertility gainsPublishe
Micromechanical study of the load transfer in a polycaprolactone-collagen hybrid scaffold when subjected to unconfined and confined compression
Scaffolds are used in diverse tissue engineering applications as hosts for cell proliferation and extracellular matrix formation. One of the most used tissue engineering materials is collagen, which is well known to be a natural biomaterial, also frequently used as cell substrate, given its natural abundance and intrinsic biocompatibility. This study aims to evaluate how the macroscopic biomechanical stimuli applied on a construct made of polycaprolactone scaffold embedded in a collagen substrate translate into microscopic stimuli at the cell level. Eight poro-hyperelastic finite element models of 3D printed hybrid scaffolds from the same batch were created, along with an equivalent model of the idealized geometry of that scaffold. When applying an 8% confined compression at the macroscopic level, local fluid flow of up to 20 [Formula: see text]m/s and octahedral strain levels mostly under 20% were calculated in the collagen substrate. Conversely unconfined compression induced fluid flow of up to 10 [Formula: see text]m/s and octahedral strain from 10 to 35%. No relevant differences were found amongst the scaffold-specific models. Following the mechanoregulation theory based on Prendergast et al. (J Biomech 30:539-548, 1997. https://doi.org/10.1016/S0021-9290(96)00140-6 ), those results suggest that mainly cartilage or fibrous tissue formation would be expected to occur under unconfined or confined compression, respectively. This in silico study helps to quantify the microscopic stimuli that are present within the collagen substrate and that will affect cell response under in vitro bioreactor mechanical stimulation or even after implantation
- …