45 research outputs found

    The importance of turbulent ocean–sea ice nutrient exchanges for simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2

    Get PDF
    Different sea ice models apply unique approaches in the computation of nutrient diffusion between the ocean and the ice bottom, which are generally decoupled from the calculation of turbulent heat flux. A simple molecular diffusion formulation is often used. We argue that nutrient transfer from the ocean to sea ice should be as consistent as possible with heat transfer, since all of these fluxes respond to varying forcing in a similar fashion. We hypothesize that biogeochemical models that do not consider such turbulent nutrient exchanges between the ocean and the sea ice, despite considering brine drainage and bulk exchanges through ice freezing and melting, may underestimate bottom-ice algal production. The Los Alamos Sea Ice Model (CICE + Icepack) was used to test this hypothesis by comparing simulations without and with diffusion of nutrients across the sea ice bottom that are dependent on velocity shear, implemented in a way that is consistent with turbulent heat exchanges. Simulation results support the hypothesis, showing a significant enhancement of ice algal production and biomass when nutrient limitation was relieved by bottom-ice turbulent exchange. Our results emphasize the potentially critical role of turbulent exchanges to sea ice algal blooms and thus the importance of properly representing them in biogeochemical models. The relevance of this becomes even more apparent considering ongoing trends in the Arctic Ocean, with a predictable shift from light-limited to nutrient-limited growth of ice algae earlier in the spring, as the sea ice becomes more fractured and thinner with a larger fraction of young ice with thin snow cover

    Remote Estimates of Ice Algae Biomass and Their Response to Environmental Conditions during Spring Melt

    Get PDF
    In this study, we support previous work showing that a normalized difference index (NDI) using two spectral bands of transmitted irradiance (478 and 490 nm) can be used as a non-invasive method to estimate sea ice chlorophyll a (chl a) following a simple calibration to the local region. Application of this method during the spring bloom period (9 May to 26 June) provided the first non-invasive time series dataset used to monitor changes in bottom ice chl a concentration, an index of algal biomass, at a single point location. The transmitted irradiance dataset was collected on landfast first-year sea ice of Allen Bay, Nunavut, in 2011, along with the physical variables thought to affect chl a accumulation and loss at the ice bottom. Time series biomass calculated using the NDI technique adhered well to core based biomass estimates although, chl a values remained low throughout the bloom, reaching a maximum of 27.6 mg m-2 at the end of May. It is likely that warming of the bottom ice contributed to loss of chl a through its positive influence on brine drainage and ice melt. Chl a content in the bottom ice was also significantly affected by a storm event on 10 June, which caused extensive surface melt and a rapid increase in the magnitude of transmitted irradiance. Furthermore, the velocity of current, measured below the ice at the end of a spring neap-tidal cycle, was negatively associated with ice algae chl a biomass (the stronger the current, the less biomass). The NDI method to remotely estimate ice algal biomass proved useful for application in our time series process study, providing a way to assess the effects of changes to the sea ice environment on the biomass of a single population of ice algae.La présente étude vient appuyer d’anciennes études selon lesquelles un indice par différence normalisée (IDN) recourant à deux bandes spectrales d’éclairement énergétique transmis (478 et 490 nm) peut servir de méthode non invasive d’estimation de la chlorophylle a (chl a) de glace de mer suivant un simple étalonnage dans une aire locale. Le recours à cette méthode pendant la saison de l’efflorescence printanière (du 9 mai au 26 juin) a permis d’obtenir le premier ensemble de données non invasives en séries chronologiques dans le but de surveiller les changements se manifestant dans la concentration de chl a de la glace de fond, un indice de biomasse algale, en un seul point. Les données relatives à l’éclairement énergétique transmis ont été recueillies à partir de la glace de mer de rive de l’année à la baie Allen, au Nunavut, en 2011, en même temps que les variables physiques censées avoir des effets sur l’accumulation de chl a et sur la perte de glace de fond. Les données chronologiques relatives à la biomasse calculées à l’aide de la technique de l’IDN cadraient bien avec les estimations de la biomasse obtenues à l’aide d’échantillons, bien que les valeurs de la chl a restaient à la baisse pendant l’efflorescence, pour atteindre un maximum de 27,6 mg m-2 à la fin du mois de mai. Il est vraisemblable que le réchauffement de la glace de fond a entraîné la perte de chl a en raison de son influence positive sur l’égouttage de la saumure et la fonte des glaces. La teneur en chl a de la glace de fond a également été fortement touchée par un événement pluvio-hydrologique qui a eu lieu le 10 juin, événement qui a entraîné une importante fonte en surface et l’augmentation rapide de la magnitude de l’éclairement énergétique transmis. Par ailleurs, la vélocité du courant, mesurée sous la glace à la fin d’un cycle printanier de marée de mortes-eaux, a été négativement liée à la biomasse en chl a de l’algue glaciaire (plus le courant était fort, moins la biomasse était grande). La méthode de l’IDN en vue d’estimer la biomasse de l’algue glaciaire à distance s’est avérée utile dans le cadre de l’application de notre étude en séries chronologiques, car elle a présenté un moyen d’évaluer les effets des changements caractérisant l’environnement de la glace de mer sur la biomasse d’une seule population d’algues glaciaires

    Drivers of Atmosphere-Ocean CO2 Flux in Northern Norwegian Fjords

    Get PDF
    High-latitude fjords and continental shelves are shown to be sinks for atmospheric CO2, yet large spatial-temporal variability and poor regional coverage of sea-air CO2 flux data, especially from fjord systems, makes it difficult to scale our knowledge on how they contribute to atmospheric carbon regulation. The magnitude and seasonal variability of atmosphere-sea CO2 flux was investigated in high-latitude northern Norwegian coastal areas over 2018 and 2019, including four fjords and one coastal bay. The aim was to assess the physical and biogeochemical factors controlling CO2 flux and partial pressure of CO2 in surface water via correlation to physical oceanographic and biological measurements. The results show that the study region acts as an overall atmospheric CO2 sink throughout the year, largely due to the strong undersaturation of CO2 relative to atmospheric concentrations. Wind speed exerted the strongest influence on the instantaneous rate of sea-air CO2 exchange, while exhibiting high variability. We concluded that the northernmost fjords (Altafjord and Porsangerfjord) showed stronger potential for instantaneous CO2 uptake due to higher wind speeds. We also found that fixation of CO2 was likely a significant factor controlling ΔpCO2 from April to June, which followed phenology of spring phytoplankton blooms at each location. Decreased ΔpCO2 and the resulting sea-air CO2 flux was observed in autumn due to a combined reduction of the mixed layer with entrain of high CO2 subsurface water, damped biological activity and higher surface water temperatures. This study provides the first measurements of atmospheric CO2 flux in these fjord systems and therefore an important new baseline for gaining a better understanding on how the northern Norwegian coast and characteristic fjord systems participate in atmosphere carbon regulation

    FTIR autecological analysis of bottom-ice diatom taxa across a tidal strait in the Canadian Arctic

    Get PDF
    A recent study demonstrated that an Arctic tidal strait, where a shoaled and constricted waterway increases tidally driven sub-ice currents and turbulence, represents a “hotspot” for ice algal production due to a hypothesized enhanced ocean-ice nutrient supply. Based on these findings, we sampled the bottom-ice algal community across the same tidal strait between the Finlayson Islands within Dease Strait, Nunavut, Canada, in spring 2017. Our objective was to examine cellular responses of sea-ice diatoms to two expected nutrient supply gradients in their natural environment: (1) a horizontal gradient across the tidal strait and (2) a vertical gradient in the bottom-ice matrix. Two diatom taxa, Nitzschia frigida and Attheya spp. in bottomice sections (0–2, 2–5, and 5–10 cm) under thin snow cover (<5 cm), were selected for Fourier Transform Infrared (FTIR) spectrochemical analysis for lipid and protein content. Results from the FTIR technique strongly supported the existence of a horizontal nutrient gradient across the tidal strait of the Finlayson Islands, while estimates of particulate organic carbon and chlorophyll a concentrations were difficult to interpret. The larger N. frigida cells appeared to be more sensitive to the suspected horizontal nutrient gradient, significantly increasing in lipid content relative to protein beyond the tidal strait. In contrast, the epiphytic diatoms, Attheya spp., were more sensitive to the vertical gradient: above 2 cm in the bottom-ice matrix, the non-motile cells appeared to be trapped with a depleted nutrient inventory and evidence of a post-bloom state. Application of the FTIR technique to estimate biomolecular composition of algal cells provided new insights on the response of the bottom-ice algal community to the examined spatial gradients that could not be obtained from conventional bulk measurements alone. Future studies of sea ice and associated environments are thus encouraged to employ this technique

    Microalgal community structure and primary production in Arctic and Antarctic sea ice : A synthesis

    Get PDF
    Sea ice is one the largest biomes on earth, yet it is poorly described by biogeochemical and climate models. In this paper, published and unpublished data on sympagic (ice-associated) algal biodiversity and productivity have been compiled from more than 300 sea-ice cores and organized into a systematic framework. Significant patterns in microalgal community structure emerged from this framework. Autotrophic flagellates characterize surface communities, interior communities consist of mixed microalgal populations and pennate diatoms dominate bottom communities. There is overlap between landfast and pack-ice communities, which supports the hypothesis that sympagic microalgae originate from the pelagic environment. Distribution in the Arctic is sometimes quite different compared to the Antarctic. This difference may be related to the time of sampling or lack of dedicated studies. Seasonality has a significant impact on species distribution, with a potentially greater role for flagellates and centric diatoms in early spring. The role of sea-ice algae in seeding pelagic blooms remains uncertain. Photosynthesis in sea ice is mainly controlled by environmental factors on a small scale and therefore cannot be linked to specific ice types. Overall, sea-ice communities show a high capacity for photoacclimation but low maximum productivity compared to pelagic phytoplankton. Low carbon assimilation rates probably result from adaptation to extreme conditions of reduced light and temperature in winter. We hypothesize that in the near future, bottom communities will develop earlier in the season and develop more biomass over a shorter period of time as light penetration increases due to the thinning of sea ice. The Arctic is already witnessing changes. The shift forward in time of the algal bloom can result in a mismatch in trophic relations, but the biogeochemical consequences are still hard to predict. With this paper we provide a number of parameters required to improve the reliability of sea-ice biogeochemical models.Peer reviewe

    Polar oceans and sea ice in a changing climate

    Get PDF
    Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the context of climate change. However, our ability to monitor the pace and magnitude of changes in the polar regions and evaluate their impacts for the rest of the globe is limited by both remoteness and sea-ice coverage. Sea ice not only supports biological activity and mediates gas and aerosol exchange but can also hinder some in-situ and remote sensing observations. While satellite remote sensing provides the baseline climate record for sea-ice properties and extent, these techniques cannot provide key variables within and below sea ice. Recent robotics, modeling, and in-situ measurement advances have opened new possibilities for understanding the ocean–sea ice–atmosphere system, but critical knowledge gaps remain. Seasonal and long-term observations are clearly lacking across all variables and phases. Observational and modeling efforts across the sea-ice, ocean, and atmospheric domains must be better linked to achieve a system-level understanding of polar ocean and sea-ice environments. As polar oceans are warming and sea ice is becoming thinner and more ephemeral than before, dramatic changes over a suite of physicochemical and biogeochemical processes are expected, if not already underway.These changes in sea-ice and ocean conditions will affect atmospheric processes by modifying the production of aerosols, aerosol precursors, reactive halogens and oxidants, and the exchange of greenhouse gases. Quantifying which processes will be enhanced or reduced by climate change calls for tailored monitoring programs for high-latitude ocean environments. Open questions in this coupled system will be best resolved by leveraging ongoing international and multidisciplinary programs, such as efforts led by SOLAS, to link research across the ocean–sea ice–atmosphere interface
    corecore