21 research outputs found

    Sildenafil ameliorates oxidative stress and DNA damage in the stenotic kidneys in mice with renovascular hypertension

    Get PDF
    Background: Oxidative stress and DNA damage have been implicated in the pathogenesis of renovascular hypertension induced by renal artery stenosis in the two-kidney, one-clip (2K1C) Goldblatt model. Considering our previous report indicating that the chronic blockade of phosphodiesterase 5 with sildenafil (Viagra (R)) has marked beneficial effects on oxidative stress and DNA damage, we tested the hypothesis that sildenafil could also protect the stenotic kidneys of 2K1C hypertensive mice against oxidative stress and genotoxicity.Methods: the experiments were performed with C57BL6 mice subjected to renovascular hypertension by left renal artery clipping. Two weeks after clipping, the mice were treated with sildenafil (40 mg/kg/ day for 2 weeks, 2K1C-sildenafil group) or the vehicle (2K1C). These mice were compared with control mice not subjected to renal artery clipping (Sham). After hemodynamic measurements, the stenotic kidneys were assessed using flow cytometry to evaluate cell viability and the comet assay to evaluate DNA damage. Measurements of intracellular superoxide anions and hydrogen peroxide levels as well as nitric oxide bioavailability were also obtained.Results: Sildenafil treatment significantly reduced mean arterial pressure (15%), heart rate (8%), intrarenal angiotensin II (50%) and renal atrophy (36%). in addition, it caused a remarkable decrease of reactive oxygen species production. On the other hand, sildenafil increased nitric oxide levels relative to those in the nontreated 2K1C mice. Sildenafil treatment also significantly reduced the high level of kidney DNA damage that is a characteristic of renovascular hypertensive mice.Conclusions: Our data reveal that sildenafil has a protective effect on the stenotic kidneys of 2K1C mice, suggesting a new use of phosphodiesterase 5 inhibitors for protection against the DNA damage observed in the hypoperfused kidneys of individuals with renovascular hypertension. Further translational research is necessary to delineate the mechanisms involved in the prevention of renal stenosis in the clinical setting.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)State Agency for the Development of Science and Technology (FAPES)Univ Fed Espirito Santo, Hlth Sci Ctr, Lab Translat Physiol, Vitoria, ES, BrazilUniv Fed Paraiba, Hlth Sci Ctr, Dept Physiol & Pathol, BR-58059900 Joao Pessoa, Paraiba, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilUniv Vila Velha, Pharmaceut Sci Grad Program, Vila Velha, ES, BrazilFed Inst Educ Sci & Technol IFES, Vila Velha, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilCNPq: 302582/2011-8CNPq: 476525/2012-8CNPq: 305188/2012-7CNPq: 473177/2013-7State Agency for the Development of Science and Technology (FAPES): 54498465CNPq: 012/2009Web of Scienc

    Mechanisms of Action of Kefir in Chronic Cardiovascular and Metabolic Diseases

    Get PDF
    The gut microbiota maintains a complex mutual interaction with different organs of the host. Whereas in normal conditions this natural community of trillions of microorganisms greatly contributes to the human health, gut dysbiosis is related with onset or worsening of diverse chronic systemic diseases. Thus, the reestablishment of gut microbiota homeostasis with consumption of prebiotics and probiotics may be a relevant strategy to prevent or attenuate several cardiovascular and metabolic complications. Among these functional foods, the synbiotic kefir, which is a fermented milk composed of a mixture of bacteria and yeasts, is currently the most used and has attracted the attention of health care professionals. The present review is focused on reports describing the feasibility of kefir consumption to provide benefits in cardiometabolic diseases, including hypertension, vascular endothelial dysfunction, dyslipidemia and insulin resistance. Interestingly, recent studies show that mechanisms of actions of kefir in cardiometabolic diseases include recruitment of endothelial progenitor cells, improvement of the balance vagal/sympathetic nervous system, diminution of excessive generation of reactive oxygen species, angiotensin converting enzyme inhibition, anti-inflammatory cytokines profile and alteration of the intestinal microbiota. These findings provide a better understanding about the mechanisms of the beneficial actions of kefir and motivate further investigations to determine whether the use of this synbiotic could also be translated into clinical improvements in cardiometabolic diseases

    Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension

    Get PDF
    Background: the clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice. Thus, in the present study, we tested the hypothesis that sildenafil improves endothelial function in hypertensive 2K1C mice by improving the NO/ROS balance.Methods: 2K1C hypertension was induced in C57BL/6 mice. Two weeks later, they were treated with sildenafil (40 mg/kg/day, via oral) or vehicle for 2 weeks and compared with sham mice. At the end of the treatment, the levels of plasma and intrarenal Ang peptides were measured. Endothelial function and ROS production were assessed in mesenteric arterial bed (MAB).Results: the 2K1C mice exhibited normal plasma levels of Ang I, II and 1-7, whereas the intrarenal Ang I and II were increased (similar to 35% and similar to 140%) compared with the Sham mice. Sildenafil normalized the intrarenal Ang I and II and increased the plasma (similar to 45%) and intrarenal (+15%) Ang 1-7. the 2K1C mice exhibited endothelial dysfunction, primarily due to increased ROS and decreased NO productions by endothelial cells, which were ameliorated by treatment with sildenafil.Conclusion: These data suggest that the effects of sildenafil on endothelial dysfunction in 2K1C mice may be due to interaction with RAS and restoring NO/ROS balance in the endothelial cells from MAB. Thus, sildenafil is a promising candidate drug for the treatment of hypertension accompanied by endothelial dysfunction and kidney disease.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)State Agency for the Development of Science and Technology (FAPES/Universal)Univ Fed Espirito Santo, Hlth Sci Ctr, Lab Translat Physiol, Vitoria, ES, BrazilEmescam Sch Hlth Sci, Vitoria, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilUniv Fed Espirito Santo, Hlth Sci Ctr, Pharmaceut Sci Grad Program, Vitoria, ES, BrazilUniv Fed Paraiba, Hlth Sci Ctr, Dept Physiol & Pathol, BR-58059900 Joao Pessoa, PB, BrazilUVV, Pharmaceut Sci Grad Program, Vila Velha, ES, BrazilFed Inst Educ Sci & Technol IFES, Vila Velha, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilCNPq: 302582/2011-8CNPq: 476525/2012-8CNPq: 305188/2012-7CNPq: 473177/2013-7State Agency for the Development of Science and Technology (FAPES/Universal): 012/2011State Agency for the Development of Science and Technology (FAPES/Universal): 54498465CNPq: 012/2009Web of Scienc

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Cardiac-Autonomic Imbalance and Baroreflex Dysfunction in the Renovascular Angiotensin-Dependent Hypertensive Mouse

    No full text
    Mouse models provide powerful tools for studying the mechanisms underlying the dysfunction of the autonomic reflex control of cardiovascular function and those involved in cardiovascular diseases. The established murine model of two-kidney, one-clip (2K1C) angiotensin II-dependent hypertension represents a useful tool for studying the neural control of cardiovascular function. In this paper, we discuss the main contributions from our laboratory and others regarding cardiac-autonomic imbalance and baroreflex dysfunction. We show recent data from the angiotensin-dependent hypertensive mouse demonstrating DNA damage and oxidative stress using the comet assay and flow cytometry, respectively. Finally, we highlight the relationships between angiotensin and peripheral and central nervous system areas of cardiovascular control and oxidative stress in the 2K1C hypertensive mouse
    corecore