198 research outputs found

    Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum.

    Get PDF
    The distribution of acetylated alpha-tubulin in rat cerebellum was examined and compared with that of total alpha-tubulin and tyrosinated alpha-tubulin. From immunoperoxidase-stained vibratome sections of rat cerebellum it was found that acetylated alpha-tubulin, detectable with monoclonal 6-11B-1, was preferentially enriched in axons compared with dendrites. Parallel fiber axons, in particular, were labeled with 6-11B-1 yet unstained by an antibody recognizing tyrosinated alpha-tubulin, indicating that parallel fibers contain alpha-tubulin that is acetylated and detyrosinated. Axonal microtubules are known to be highly stable and the distribution of acetylated alpha-tubulin in other classes of stable microtubules suggests that acetylation and possibly detyrosination may play a role in the maintenance of stable populations of microtubules

    A cellular model of oxidant-mediated neuronal injury

    Full text link
    Oxidants derived from the partial reduction of oxygen are thought to play a significant role in neuronal injury. We present here a cellular model of neuronal injury mediated by hydrogen peroxide (H2O2) using the PC 12 rat pheochromocytoma cell line. The organization of microtubules and microfilaments within neurites of PC 12 cells differentiated by exposure to nerve growth factor was examined after H2O2 injury using fluorescence microscopy. Concentrations of H2O2 as low as 100 [mu]M produced an initial periodic pattern of microtubule depolymerization over 3-4 which later progressed to complete depolymerization. Neuritic microspikes containing actin filaments were relatively more resistant to injury by H2O2 than microtubules. Blebbing of PC 12 cell bodies and neurites also was seen after H2O2 injury and the blebs appeared to contain microtubules. The destructive changes affecting neuritic structure preceded but were not essential for PC 12 cell lysis. Exposure of the cells to the Ca2+ ionophore, ionomycin (25 [mu]M) also produced the same pattern of microtubule depolymerization in PC 12 neurites as was seen after H2O2 injury suggesting that H2O2 may mediate its destructive effect on the neurites via elevation of intracellular Ca2+.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30737/1/0000386.pd

    Reduced tubulin tyrosination as an early marker of mercury toxicity in differentiating N2a cells

    Get PDF
    The aims of this work were to compare the effects of methyl mercury chloride and Thimerosal on neurite/process outgrowth and microtubule proteins in differentiating mouse N2a neuroblastoma and rat C6 glioma cells. Exposure for 4 h to sublethal concentrations of both compounds inhibited neurite outgrowth to a similar extent in both cells lines compared to controls. In the case of N2a cells, this inhibitory effect by both compounds was associated with a fall in the reactivity of western blots of cell extracts with monoclonal antibody T1A2, which recognises C-terminally tyrosinated α-tubulin. By contrast, reactivity with monoclonal antibody B512 (which recognises total α-tubulin) was unaffected at the same time point. These findings suggest that decreased tubulin tyrosination represents a neuron-specific early marker of mercury toxicity associated with impaired neurite outgrowth

    Technical and Comparative Aspects of Brain Glycogen Metabolism.

    Get PDF
    It has been known for over 50 years that brain has significant glycogen stores, but the physiological function of this energy reserve remains uncertain. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism, and may also stem from some conceptual limitations. Factors presenting technical challenges include low glycogen content in brain, non-homogenous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here, we briefly review aspects of glycogen structure and metabolism that bear on these technical challenges, and discuss ways these can be overcome. We also highlight physiological aspects of glycogen metabolism that limit the conditions under which glycogen metabolism can be useful or advantageous over glucose metabolism. Comparisons with glycogen metabolism in skeletal muscle provide an additional perspective on potential functions of glycogen in brain

    Structure and function of mammalian cilia

    Get PDF
    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease
    • …
    corecore