94 research outputs found

    Cell Wall Composition and Structure Define the Developmental Fate of Embryogenic Microspores in Brassica napus

    Full text link
    [EN] Microspore cultures generate a heterogeneous population of embryogenic structures that can be grouped into highly embryogenic structures [exine-enclosed (EE) and loose bicellular structures (LBS)] and barely embryogenic structures [compact callus (CC) and loose callus (LC) structures]. Little is known about the factors behind these different responses. In this study we performed a comparative analysis of the composition and architecture of the cell walls of each structure by confocal and quantitative electron microscopy. Each structure presented specific cell wall characteristics that defined their developmental fate. EE and LBS structures, which are responsible for most of the viable embryos, showed a specific profile with thin walls rich in arabinogalactan proteins (AGPs), highly and low methyl-esterified pectin and callose, and a callose-rich subintinal layer not necessarily thick, but with a remarkably high callose concentration. The different profiles of EE and LBS walls support the development as suspensorless and suspensor-bearing embryos, respectively. Conversely, less viable embryogenic structures (LC) presented the thickest walls and the lowest values for almost all of the studied cell wall components. These cell wall properties would be the less favorable for cell proliferation and embryo progression. High levels of highly methyl-esterified pectin are necessary for wall flexibility and growth of highly embryogenic structures. AGPs seem to play a role in cell wall stiffness, possibly due to their putative role as calcium capacitors, explaining the positive relationship between embryogenic potential and calcium levels.This work was supported by grant PID2020-115763RBI00 to JS-S from Spanish MICINN and by a Juan de la Cierva -Incorporacion Fellowship and a Marie Sklodowska-Curie Individual Fellowship (656579) to PC-M. RM holds a CDEIGENT (2018/023) fellowship from Generalitat Valenciana.Camacho-FernĂĄndez, C.; SeguĂ­-Simarro, JM.; Mir Moreno, R.; Boutilier, K.; Corral-MartĂ­nez, P. (2021). Cell Wall Composition and Structure Define the Developmental Fate of Embryogenic Microspores in Brassica napus. Frontiers in Plant Science. 12:1-16. https://doi.org/10.3389/fpls.2021.7371391161

    Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis

    Full text link
    [EN] Doubled haploid (DH) technology allows for the production of pure lines, useful for plant breeding, through a one-generation procedure that reduces considerably the time and resources needed to produce them. Despite the advantages of microspore culture to obtain DHs, this technique is still insufficiently developed in eggplant, where DHs are produced from microsporederived calli through organogenesis. At present, very little is known on the best in vitro conditions to promote this process. This is why in this work we addressed the optimization of the process of regeneration of eggplant DH plants from microspore-derived calli. We evaluated the effect of different media compositions in the induction of organogenesis, in the promotion of shoot growth and elongation, and in root growth. According to our results, we propose the repeated subculture of the calli in MS medium with 0.2 mg/l IAA and 4 mg/l zeatin to produce shoots, and then the repeated subculture of the excised shoots in basal MS medium to promote their conversion into entire plantlets. This procedure yielded 7.6 plants per 100 cultured calli, which represents a *49 increase with respect to previous reports. We also evaluated by flow cytometry and SSR molecular markers the effect of these in vitro culture conditions in the rate of DH plant production, finding that*70 % of the regenerated plants were true DHs. These results substantially improve the efficiencies of DH recovery published to date in eggplant, and may be useful to those working in the field of eggplant doubled haploidy and breeding.We acknowledge Dr. Rosa Peiro for her statistical advice, and the staff of the COMAV greenhouses for their valuable help. This work was supported by the AGL2014-55177-R grant from Spanish MINECO to JMSS.Rivas Sendra, A.; Corral MartĂ­nez, P.; Camacho FernĂĄndez, C.; SeguĂ­-Simarro, JM. (2015). Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell, Tissue and Organ Culture. 122(3):759-765. https://doi.org/10.1007/s11240-015-0791-6S7597651223Asif M, Eudes F, Randhawa H, Amundsen E, Spaner D (2014) Phytosulfokine alpha enhances microspore embryogenesis in both triticale and wheat. Plant Cell Tissue Organ Cult 116:125–130Borgato L, Conicella C, Pisani F, Furini A (2007) Production and characterization of arboreous and fertile Solanum melongena plus Solanum marginatum somatic hybrid plants. Planta 226:961–969Castillo AM, Nielsen NH, Jensen A, VallĂ©s MP (2014) Effects of n-butanol on barley microspore embryogenesis. Plant Cell Tissue Organ Cult 117:411–418Corral-MartĂ­nez P, SeguĂ­-Simarro JM (2012) Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica 187:47–61Corral-MartĂ­nez P, SeguĂ­-Simarro JM (2014) Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 195:369–382Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104:359–373Dumas de Vaulx R, Chambonnet D (1982) Culture in vitro d’anthĂšres d’aubergine (Solanum melongena L.): stimulation de la production de plantes au moyen de traitements Ă  35°C associĂ©s Ă  de faibles teneurs en substances de croissance. Agronomie 2:983–988Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424Eshaghi ZC, Abdollahi MR, Moosavi SS, Deljou A, SeguĂ­-Simarro JM (2015) Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell Tissue Organ Cult 1–9. doi: 10.1007/s11240-015-0768-5Franklin G, Sheeba CJ, Sita GL (2004) Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cell Dev Biol Plant 40:188–191Gisbert C, Prohens J, Nuez F (2006) Efficient regeneration in two potential new crops for subtropical climates, the scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. New Zeal J Crop Hort Sci 34:55–62Kaur M, Dhatt AS, Sandhu JS, Gosal SS (2011) In vitro plant regeneration in brinjal from cultured seedling explants. Indian J Hortic 68:61–65Kim M, Park E-J, An D, Lee Y (2013) High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:191–201Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15:391–395Mohinuddin AKM, Chowdhury MKU, Abdullah Zaliha C, Napis S (1997) Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell Tissue Organ Cult 51:75–78Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. In George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3 edn, vol 1. Springer, DordrechtParra-Vega V, Renau-Morata B, Sifres A, SeguĂ­-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:353–360Rotino GL (1996) Haploidy in eggplant. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 3. Kluwer, Dordrecht, pp 115–141Salas P, Prohens J, SeguĂ­-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274SeguĂ­-Simarro JM (2015) Androgenesis in solanaceae. In GermanĂ  MA, Lambardi M (eds), In vitro embryogenesis. Springer Science + Business Media, The NetherlandsSeguĂ­-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861SeguĂ­-Simarro JM, Corral-MartĂ­nez P, Parra-Vega V, GonzĂĄlez-GarcĂ­a B (2011) Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep 30:765–778Sgamma T, Thomas B, Muleo R (2015) Ethylene inhibitor silver nitrate enhances regeneration and genetic transformation of Prunus avium (L.) cv Stella. Plant Cell Tissue Organ Cult 120:79–88Shivaraj G, Rao S (2011) Rapid and efficient plant regeneration of eggplant (Solanum melongena L.) from cotyledonary leaf explants. Indian J Biotechnol 10:125–129Tuberosa R, Sanghineti MC, Conti S (1987) Anther culture of eggplant Solanum melongena L. lines and hybrids. GenĂ©tica AgrĂĄria 41:267–274Veen H, van de Geijn S (1978) Mobility and ionic form of silver as related to longevity of cut carnations. Planta 140:93–96Xing Y, Yu Y, Luo X, Zhang JN, Zhao B, Guo YD (2010) High efficiency organogenesis and analysis of genetic stability of the regenerants in Solanum melongena. Biol Plant 54:231–236Zhang P, Phansiri S, Puonti-Kaerlas J (2001) Improvement of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell Tissue Organ Cult 67:47–5

    Effects of growth conditions of donor plants and in vitro culture environment in the viability and the embryogenic response of microspores of different eggplant genotypes

    Full text link
    [EN] Notwithstanding the importance of eggplant in global horticulture, doubled haploid production in this species is still far from being efficient. Although acknowledged to have a role in the efficiency of androgenesis induction, factors such as the growth conditions of donor plant or the in vitro culture environment have not been deeply explored or not explored at all in eggplant, which leaves room for further improvement. In this work, we investigated the effects of different in vivo and in vitro parameters on the androgenic performance of different eggplant genotypes, including two hybrids and a DH line. The in vivo parameters included the exposure of donor plants to different temperature and light conditions and to increased levels of boron. The in vitro parameters included the use of different concentrations of NLN medium components, sucrose and growth regulators, and the suspension of microspores at different densities. Our results showed that whereas greenhouse temperature variations or boron application did not to have a positive influence, greenhouse lighting influenced their viability, thereby conditioning the embryogenic response. Changes in different sucrose, salts and hormone levels had different effects in the genotypes studied, which correlated with their genetic constitution. Finally, we determined the best microspore density, different from that previously proposed. Our work shed light on the role of different factors involved in eggplant microspore cultures, some of them not yet studied, contributing to make microspore culture a more efficient tool in eggplant breeding.This work was supported by Grant AGL2017-88135-R to JMSS from Spanish MICINN, respectively, jointly funded by FEDER. ARS and CCF were supported by predoctoral fellowships from the FPI Programs of Universitat Politecnica de Valencia and Generalitat Valenciana, respectively.Rivas-Sendra, A.; Corral MartĂ­nez, P.; Camacho-FernĂĄndez, C.; Porcel, R.; SeguĂ­-Simarro, JM. (2020). Effects of growth conditions of donor plants and in vitro culture environment in the viability and the embryogenic response of microspores of different eggplant genotypes. Euphytica. 216(11):1-15. https://doi.org/10.1007/s10681-020-02709-4S11521611Abdollahi MR, Corral-Martinez P, Mousavi A, Salmanian AH, Moieni A, SeguĂ­-Simarro JM (2009) An efficient method for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiol Plant 31:1313–1317Aulinger IE (2002) Combination of in vitro androgenesis and biolistic transformation: an approach for breeding transgenic maize (Zea mays L.) lines. Swiss Federal Institute of Technology, Zurich, p 115Borderies G, le Bechec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212Bueno MA, GĂłmez A, SepĂșlveda F, SeguĂ­-Simarro JM, Testillano PS, Manzanera JA, Risueño MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160:953–960Camacho-FernĂĄndez C, HervĂĄs D, Rivas-Sendra A, MarĂ­n MP, SeguĂ­-Simarro JM (2018) Comparison of six different methods to calculate cell densities. Plant Methods 14:30Chambonnet D (1988) Production of haploid eggplant plants. Bulletin interne de la Station d’AmĂ©lioration des Plantes MaraichĂšres d’Avignon-Montfavet, France, pp 1–10Corral-MartĂ­nez P, SeguĂ­-Simarro JM (2012) Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica 187:47–61Corral-MartĂ­nez P, SeguĂ­-Simarro JM (2014) Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 195:369–382Custers J (2003) Microspore culture in rapeseed (Brassica napus L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer Academic Publishers, Dordrecht, pp 185–193Dunwell JM (1976) A comparative study of environmental and developmental factors which influence embryo induction and growth in cultured anthers of Nicotiana tabacum. Environ Exp Bot 16:109–118Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424Dutta SS, Pale G, Pattanayak A, Aochen C, Pandey A, Rai M (2017) Effect of low light intensity on key traits and genotypes of hilly rice (Oryza sativa) germplasm. J Exp Biol Agric Sci 5:463–471Esteves P, Clermont I, Marchand S, Belzile F (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33:871–879 (in press)Gaillard A, Vergne P, Beckerte M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10:55–58Höfer M (2004) In vitro androgenesis in apple—improvement of the induction phase. Plant Cell Rep 22:365–370Jouannic S, Champion A, SeguĂ­-Simarro JM, Salimova E, Picaud A, Tregear J, Testillano P, Risueno MC, Simanis V, Kreis M, Henry Y (2001) The protein kinases AtMAP3Kepsilon1 and BnMAP3Kepsilon1 are functional homologues of S. pombe cdc7p and may be involved in cell division. Plant J 26:637–649Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434Kim M, Park E-J, An D, Lee Y (2013) High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:191–201Lantos C, Juhasz AG, Vagi P, Mihaly R, Kristof Z, Pauk J (2012) Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnol Rep 6:123–132Liu L, Huang L, Li Y (2013) Influence of boric acid and sucrose on the germination and growth of areca pollen. Am J Plant Sci 4:1669–1674Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15:391–395Paire A, Devaux P, Lafitte C, Dumas C, Matthys-Rochon E (2003) Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation. Plant Cell Tissue Organ Cult 73:167–176Parra-Vega V, SeguĂ­-Simarro JM (2013) Improvement of an isolated microspore culture protocol for Spanish sweet pepper (Capsicum annuum L.). In: Lanteri S, Rotino GL (eds) Breakthroughs in the genetics and breeding of Capsicum and Eggplant. Universita degli Studi di Torino, Torino, Italy, pp 161–168Peñaloza P, Toloza P (2018) Boron increases pollen quality, pollination, and fertility of different genetic lines of pepper. J Plant Nutr 41:969–979Rivas-Sendra A, Corral-MartĂ­nez P, Camacho-FernĂĄndez C, SeguĂ­-Simarro JM (2015) Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell Tissue Organ Cult 122:759–765Rivas-Sendra A, Calabuig-Serna A, SeguĂ­-Simarro JM (2017a) Dynamics of calcium during in vitro microspore embryogenesis and in vivo microspore development in Brassica napus and Solanum melongena. Front Plant Sci 8:1177Rivas-Sendra A, Campos-Vega M, Calabuig-Serna A, SeguĂ­-Simarro JM (2017b) Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica 213:89Rivas-Sendra A, Corral-MartĂ­nez P, Porcel R, Camacho-FernĂĄndez C, Calabuig-Serna A, SeguĂ­-Simarro JM (2019) Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. J Exp Bot 70:1267–1281Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J (2015) Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142:702–711Rotino GL (1996) Haploidy in eggplant. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic Publishers, Dordrecht, pp 115–141Salas P, Prohens J, SeguĂ­-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274Salas P, Rivas-Sendra A, Prohens J, SeguĂ­-Simarro JM (2012) Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184:235–250Satpute G, Long H, SeguĂ­-Simarro JM, Risueño MC, Testillano PS (2005) Cell architecture during gametophytic and embryogenic microspore development in Brassica napus. Acta Physiol Plant 27:665–674Saxena N, Johansen C (1987) Adaptation of chickpea and pigeonpea to abiotic stresses. Proceedings of the consultants’ workshop held at ICRISAT Center, India, 19–21 December 1984, ICRISAT, Patancheru, IndiaSeguĂ­-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404SeguĂ­-Simarro JM (2016) Androgenesis in solanaceae. In: GermanĂ  MA, Lambardi M (eds) In vitro embryogenesis. Springer, New York, pp 209–244SeguĂ­-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12SeguĂ­-Simarro JM, Corral-MartĂ­nez P, Parra-Vega V, GonzĂĄlez-GarcĂ­a B (2011) Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep 30:765–778Sinha R, Eudes F (2015) Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores. Plant Cell Tissue Organ Cult 122(1):227–237Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10Touraev A, Heberle-Bors E (2003) Anther and microspore culture in tobacco. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer Academic Publishers, Dordrecht, pp 223–228Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996a) Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15:561–565Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Reprod 9:209–215Tsay H-S (1981) Effects of nitrogen supply to donor plants on pollen embryogenesis in cultured tobacco anthers. J Agric Res China 30:5–13Tsay H-S (1982) Microspore development and haploid embryogenesis of anther culture with five nitrogen doses to the donor tobacco plants. J Agric Res China 31:1–13Tuberosa R, Sanguineti MC, Toni B, Cioni F (1987) Ottenimento di aploidi in melanzana (Solanum melongena L.) mediante coltura di antere. Sementi Elette 3:9–14Ć»ur I, Dubas E, Krzewska M, Janowiak F (2015) Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci 6:42

    Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer

    Full text link
    [EN] Microspore embryogenesis is an experimental morphogenic pathway with important applications in basic research and applied plant breeding, but its genetic, cellular, and molecular bases are poorly understood. We applied a multi-disciplinary approach using confocal and electron microscopy, detection of Ca2+, callose, and cellulose, treatments with caffeine, digitonin, and endosidin7, morphometry, qPCR, osmometry, and viability assays in order to study the dynamics of cell wall formation during embryogenesis induction in a high-response rapeseed (Brassica napus) line and two recalcitrant rapeseed and eggplant (Solanum melongena) lines. Formation of a callose-rich subintinal layer (SL) was common to microspore embryogenesis in the different genotypes. However, this process was directly related to embryogenic response, being greater in high-response genotypes. A link could be established between Ca2+ influx, abnormal callose/cellulose deposition, and the genotype-specific embryogenic competence. Callose deposition in inner walls and SLs are independent processes, regulated by different callose synthases. Viability and control of internal osmolality are also related to SL formation. In summary, we identified one of the causes of recalcitrance to embryogenesis induction: a reduced or absent protective SL. In responding genotypes, SLs are markers for changes in cell fate and serve as osmoprotective barriers to increase viability in imbalanced in vitro environments. Genotype-specific differences relate to different responses against abiotic (heat/osmotic) stresses.Thanks are due to the Electron Microscopy Service of Universitat Politecnica de Valencia, Marisol Gascon (IBMCP Microscopy Service), Dr Kim Boutilier (WUR, Wageningen) for hosting ARS at her lab, and Dr Samantha Vernhettes (INRA Versailles) for kindly providing us with S4B. This work supported by grants AGL2014-55177-R and AGL2017-88135-R to JMSS from MINECO jointly funded by FEDER.Rivas-Sendra, A.; Corral MartĂ­nez, P.; Porcel, R.; Camacho-FernĂĄndez, C.; Calabuig-Serna, A.; SeguĂ­-Simarro, JM. (2019). Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer. Journal of Experimental Botany. 70(4):1267-1281. https://doi.org/10.1093/jxb/ery458S12671281704Abramova, L. I. (2003). Russian Journal of Plant Physiology, 50(3), 324-329. doi:10.1023/a:1023866019102Adkar-Purushothama, C. R., Brosseau, C., GiguĂšre, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523Cordewener, J., Bergervoet, J., & Liu, C.-M. (2000). Changes in Protein Synthesis and Phosphorylation during Microspore Embryogenesis in Brassica napus. Journal of Plant Physiology, 156(2), 156-163. doi:10.1016/s0176-1617(00)80300-4Corral-MartĂ­nez, P., GarcĂ­a-Fortea, E., Bernard, S., Driouich, A., & SeguĂ­-Simarro, J. M. (2016). Ultrastructural Immunolocalization of Arabinogalactan Protein, Pectin and Hemicellulose Epitopes Through Anther Development inBrassica napus. Plant and Cell Physiology, 57(10), 2161-2174. doi:10.1093/pcp/pcw133Fortes, A. M., Testillano, P. S., Del Carmen Risueño, M., & Pais, M. S. (2002). Studies on callose and cutin during the expression of competence and determination for organogenic nodule formation from internodes of Humulus lupulus var. Nugget. Physiologia Plantarum, 116(1), 113-120. doi:10.1034/j.1399-3054.2002.1160114.xFurch, A. C. U., Hafke, J. B., Schulz, A., & van Bel, A. J. E. (2007). Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. Journal of Experimental Botany, 58(11), 2827-2838. doi:10.1093/jxb/erm143Grewal, R. K., Lulsdorf, M., Croser, J., Ochatt, S., Vandenberg, A., & Warkentin, T. D. (2009). Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Reports, 28(8), 1289-1299. doi:10.1007/s00299-009-0731-1Hoekstra, S., van Bergen, S., van Brouwershaven, I. ., Schilperoort, R. ., & Wang, M. (1997). Androgenesis in Hordeum vulgare L.: Effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Science, 126(2), 211-218. doi:10.1016/s0168-9452(97)00096-4Hong, Z., Delauney, A. J., & Verma, D. P. S. (2001). A Cell Plate–Specific Callose Synthase and Its Interaction with Phragmoplastin. The Plant Cell, 13(4), 755-768. doi:10.1105/tpc.13.4.755Jacobs, A. K., Lipka, V., Burton, R. A., Panstruga, R., Strizhov, N., Schulze-Lefert, P., & Fincher, G. B. (2003). An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation. The Plant Cell, 15(11), 2503-2513. doi:10.1105/tpc.016097Jacquard, C., Mazeyrat-Gourbeyre, F., Devaux, P., Boutilier, K., Baillieul, F., & ClĂ©ment, C. (2008). Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta, 229(2), 393-402. doi:10.1007/s00425-008-0838-6Jensen, W. A. (1968). Cotton embryogenesis: The zygote. Planta, 79(4), 346-366. doi:10.1007/bf00386917Joosen, R., Cordewener, J., Supena, E. D. J., Vorst, O., Lammers, M., Maliepaard, C., 
 Boutilier, K. (2007). Combined Transcriptome and Proteome Analysis Identifies Pathways and Markers Associated with the Establishment of Rapeseed Microspore-Derived Embryo Development. Plant Physiology, 144(1), 155-172. doi:10.1104/pp.107.098723KAY, R., CHAN, A., DALY, M., & MCPHERSON, J. (1987). Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299Ochatt, S., Pech, C., Grewal, R., Conreux, C., Lulsdorf, M., & Jacas, L. (2009). Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). Journal of Plant Physiology, 166(12), 1314-1328. doi:10.1016/j.jplph.2009.01.011Park, E., DĂ­az-Moreno, S. M., Davis, D. J., Wilkop, T. E., Bulone, V., & Drakakaki, G. (2014). Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct Trafficking Events during Cell Plate Maturation. Plant Physiology, 165(3), 1019-1034. doi:10.1104/pp.114.241497Parra-Vega, V., Corral-MartĂ­nez, P., Rivas-Sendra, A., & SeguĂ­-Simarro, J. M. (2015). Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01018Paul, D. C., & Goff, C. W. (1973). Comparative effects of caffeine, its analogues and calcium deficiency on cytokinesis. Experimental Cell Research, 78(2), 399-413. doi:10.1016/0014-4827(73)90085-2Pauls, K. P., Chan, J., Woronuk, G., Schulze, D., & Brazolot, J. (2006). When microspores decide to become embryos — cellular and molecular changesThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. Canadian Journal of Botany, 84(4), 668-678. doi:10.1139/b06-064Reynolds, T. L. (1990). Interactions between calcium and auxin during pollen androgenesis in anther cultures of Solanum carolinense L. Plant Science, 72(1), 109-114. doi:10.1016/0168-9452(90)90192-qReynolds, T. L. (2000). Effects of calcium on embryogenic induction and the accumulation of abscisic acid, and an early cysteine-labeled metallothionein gene in androgenic microspores of Triticum aestivum. Plant Science, 150(2), 201-207. doi:10.1016/s0168-9452(99)00187-9Rivas-Sendra, A., Calabuig-Serna, A., & SeguĂ­-Simarro, J. M. (2017). Dynamics of Calcium during In vitro Microspore Embryogenesis and In vivo Microspore Development in Brassica napus and Solanum melongena. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01177Rivas-Sendra, A., Campos-Vega, M., Calabuig-Serna, A., & SeguĂ­-Simarro, J. M. (2017). Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica, 213(4). doi:10.1007/s10681-017-1879-3Rivas-Sendra, A., Corral-MartĂ­nez, P., Camacho-FernĂĄndez, C., & SeguĂ­-Simarro, J. M. (2015). Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 122(3), 759-765. doi:10.1007/s11240-015-0791-6Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y. G., Maathuis, F. J. M., & Goloubinoff, P. (2009). The Heat Shock Response in Moss Plants Is Regulated by Specific Calcium-Permeable Channels in the Plasma Membrane. The Plant Cell, 21(9), 2829-2843. doi:10.1105/tpc.108.065318Samuels, A. L., & Staehelin, L. A. (1996). Caffeine inhibits cell plate formation by disrupting membrane reorganization just after the vesicle fusion step. Protoplasma, 195(1-4), 144-155. doi:10.1007/bf01279193Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 
 Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019Schlïżœpmann, H., Bacic, A., & Read, S. (1993). A novel callose synthase from pollen tubes of Nicotiana. Planta, 191(4). doi:10.1007/bf00195748Shi, X., Sun, X., Zhang, Z., Feng, D., Zhang, Q., Han, L., 
 Lu, T. (2014). GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. Plant and Cell Physiology, 56(3), 497-509. doi:10.1093/pcp/pcu193Slewinski, T. L., Baker, R. F., Stubert, A., & Braun, D. M. (2012). Tie-dyed2 Encodes a Callose Synthase That Functions in Vein Development and Affects Symplastic Trafficking within the Phloem of Maize Leaves. Plant Physiology, 160(3), 1540-1550. doi:10.1104/pp.112.202473Sun, F., Fan, G., Hu, Q., Zhou, Y., Guan, M., Tong, C., 
 Wang, H. (2017). The high-quality genome ofBrassica napuscultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. The Plant Journal, 92(3), 452-468. doi:10.1111/tpj.13669Tan, H., Yang, X., Zhang, F., Zheng, X., Qu, C., Mu, J., 
 Zuo, J. (2011). Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds. Plant Physiology, 156(3), 1577-1588. doi:10.1104/pp.111.175000Töller, A., Brownfield, L., Neu, C., Twell, D., & Schulze-Lefert, P. (2008). Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. The Plant Journal, 54(5), 911-923. doi:10.1111/j.1365-313x.2008.03462.xVerma, D. P. S. (2001). CYTOKINESIS ANDBUILDING OF THECELLPLATE INPLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 751-784. doi:10.1146/annurev.arplant.52.1.751Verma, D. P. S., & Hong, Z. (2001). Plant Molecular Biology, 47(6), 693-701. doi:10.1023/a:1013679111111Vithanage, H. I. M. V., Gleeson, P. A., & Clarke, A. E. (1980). The nature of callose produced during self-pollination inSecale cereale. Planta, 148(5), 498-509. doi:10.1007/bf00552666Waldmann, T., Jeblick, W., & Kauss, H. (1988). Induced net Ca2+ uptake and callose biosynthesis in suspension-cultured plant cells. Planta, 173(1), 88-95. doi:10.1007/bf00394492WHITE, P. J. (2003). Calcium in Plants. Annals of Botany, 92(4), 487-511. doi:10.1093/aob/mcg164Xie, B., Deng, Y., Kanaoka, M. M., Okada, K., & Hong, Z. (2012). Expression of Arabidopsis callose synthase 5 results in callose accumulation and cell wall permeability alteration. Plant Science, 183, 1-8. doi:10.1016/j.plantsci.2011.10.015Ling You, X., Seon Yi, J., & Eui Choi, Y. (2006). Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma, 227(2-4), 105-112. doi:10.1007/s00709-006-0149-3Yu, Y., Jiao, L., Fu, S., Yin, L., Zhang, Y., & Lu, J. (2016). Callose Synthase Family Genes Involved in the Grapevine Defense Response to Downy Mildew Disease. PhytopathologyÂź, 106(1), 56-64. doi:10.1094/phyto-07-15-0166-rZhang, C., Guinel, F. C., & Moffatt, B. A. (2002). A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile mutant apt1-3. Protoplasma, 219(1-2), 59-71. doi:10.1007/s00709020000

    Evolution of the microstructure, chemical composition and magnetic behaviour during the synthesis of alkanethiol-capped gold nanoparticles

    Get PDF
    In the present paper, we show an exhaustive microstructural characterization of thiol-capped gold nanoparticles (NPs) with two different average particle sizes. These samples are compared with the polymer-like Au(I) phase formed as a precursor during the synthesis of the thiol-capped gold NPs. The set of analysed samples shows different microstructures at the nanoscale with different proportions of Au atoms bonded either to S or to Au atoms. It has been experimentally shown that the presence of a ferromagnetic-like behaviour is associated to the formation of NPs with simultaneous presence of Au–Au and Au–S bonds. In order to explain such magnetic behaviour a possible model is proposed based on the spin–orbit coupling so that localized charges and/or spins (Au–S bonds) can trap conduction electrons (Au–Au bonds) in orbits.XAS facilities at BM29 in ESRF and the technical support from G.L. Ciatto are acknowledged. Financial support from the Spanish MEC (NAN2004-09125-C07) and “Junta de Andalucía” is also acknowledged. E. Guerrero thanks the Spanish MEC for financial support.Peer reviewe

    Magnetic and microstructural analysis of palladium nanoparticles with different capping systems

    Get PDF
    Palladium nanoparticles capped with different protective systems in a size range between 1.2 and 2.4 nm have been obtained by varying the preparation chemical method. Magnetization curves for all the samples show hysteresis loops, evidencing a ferromagnetic or a permanent magnetism in the nanoparticles. The microstructure of the nanoparticles has been analyzed by x-ray absorption and transmission electron microscopy. The nature of the magnetic behavior found for all these Pd nanoparticles (NPs) is different depending on their sizes and structural features and is explained on the basis of two different suggested mechanisms. The particles protected by means of a surfactant (tetralkylammonium salts), present a ferromagnetic order related to the factors increasing the density of states just below the Fermi level. Whereas, when the nanoparticles are stabilized by covalent bonds with protective species (thiol derivatized alkane chains or surface oxidized Pd NPs), the increase of the 4d density of holes, localized by the bonded atoms (S or O), is giving rise to the observed ferromagneticlike behavio

    Analysis of endogenous peptides released from osteoarthritic articular cartilage unravels novel pathogenic markers

    Get PDF
    [Abstract] Osteoarthritis (OA) is a pathology characterized by the loss of articular cartilage. In this study, we performed a peptidomic strategy to identify endogenous peptides (neopeptides) that are released from human osteoarthritic tissue, which may serve as disease markers. With this aim, secretomes of osteoarthritic and healthy articular cartilages obtained from knee and hip were analyzed by shotgun peptidomics. This discovery step led to the identification of 1175 different peptides, corresponding to 101 proteins, as products of the physiological or pathological turnover of cartilage extracellular matrix. Then, a targeted multiple reaction monitoring-mass spectrometry method was developed to quantify the panel of best marker candidates on a larger set of samples (n = 62). Statistical analyses were performed to evaluate the significance of the observed differences and the ability of the neopeptides to classify the tissue. Eight of them were differentially abundant in the media from wounded zones of OA cartilage compared with the healthy tissue (p < 0.05). Three neopeptides belonging to Clusterin and one from Cartilage Oligomeric Matrix Protein showed a disease-dependent decrease specifically in hip OA, whereas two from Prolargin (PRELP) and one from Cartilage Intermediate Layer Protein 1 were significantly increased in samples from knee OA. The release of one peptide from PRELP showed the best metrics for tissue classification (AUC = 0.834). The present study reveals specific neopeptides that are differentially released from knee or hip human osteoarthritic cartilage compared with healthy tissue. This evidences the intervention of characteristic pathogenic pathways in OA and provides a novel panel of peptidic candidates for biomarker development.Instituto de Salud Carlos III; PI14/01707Instituto de Salud Carlos III; PI16/02124Instituto de Salud Carlos III; PI17/00404Instituto de Salud Carlos III; CIBER-CB06/01/0040Instituto de Salud Carlos III; DTS17/00200Instituto de Salud Carlos III; RETIC-RIER-RD16/0012/0002Instituto de Salud Carlos III; PT17/0019/001

    Risk factors, clinical features, and outcomes of listeriosis in solid-organ transplant recipients: a matched case-control study

    Get PDF
    BACKGROUND: Solid-organ transplant (SOT) recipients are classically considered to be at increased risk for listeriosis. However, risk factors for this infection have not been assessed. METHODS: We carried out a multicenter, matched case-control study (1:2 ratio) from January 1995 through December 2007. Control subjects were matched for center, transplant type, and timing. Conditional logistic regression was performed to identify independent risk factors. Clinical features and outcomes for all case patients were reviewed. RESULTS: Thirty patients (0.12%) with cases of listeriosis were identified among 25,997 SOT recipients at 15 Spanish transplant centers. In a comparison of case patients with 60 matched control subjects, the following independent risk factors for listeriosis were identified: diabetes mellitus (odds ratio [OR], 5.6; 95% confidence interval [CI], 1.6-19.6; ), P = .007 history of cytomegalovirus infection or disease within the preceding 6 months (OR, 35.9; 95% CI, 2.1-620; P = .014), receipt of high-dose prednisone within the preceding 6 months (OR, 6.2; 95% CI, 1.8-21.1; P = .003), and trimethoprim-sulfamethoxazole (TMP-SMZ) prophylaxis (OR, 0.07; 95% CI, 0.006-0.76; P = .029). Twenty-six patients (86.7%) had bacteremia, and 7 had shock at presentation. Other manifestations included meningoencephalitis (10 cases), spontaneous peritonitis (2), pleural empyema (1), brain abscesses (1), and liver abscesses (1). The 30-day mortality rate was 26.7% (8 of 30 patients died). CONCLUSIONS: Listeriosis in SOT recipients is uncommon but causes high mortality. Diabetes mellitus, cytomegalovirus infection or disease, and receipt of high-dose steroids are independent risk factors for this infection, whereas TMP-SMZ prophylaxis is a protective factor

    Predictive modeling of therapeutic response to chondroitin sulfate/glucosamine hydrochloride in knee osteoarthritis

    Get PDF
    [Abstract] Background: In the present study, we explored potential protein biomarkers useful to predict the therapeutic response of knee osteoarthritis (KOA) patients treated with pharmaceutical grade Chondroitin sulfate/Glucosamine hydrochloride (CS+GH; Droglican, Bioiberica), in order to optimize therapeutic outcomes. Methods: A shotgun proteomic analysis by iTRAQ labelling and liquid chromatography–mass spectrometry (LC-MS/MS) was performed using sera from 40 patients enrolled in the Multicentre Osteoarthritis interVEntion trial with Sysadoa (MOVES). The panel of proteins potentially useful to predict KOA patient’s response was clinically validated in the whole MOVES cohort at baseline (n = 506) using commercially available enzyme-linked immunosorbent assays kits. Logistic regression models and receiver-operating-characteristics (ROC) curves were used to analyze the contribution of these proteins to our prediction models of symptomatic drug response in KOA. Results: In the discovery phase of the study, a panel of six putative predictive biomarkers of response to CS+GH (APOA2, APOA4, APOH, ITIH1, C4BPa and ORM2) were identified by shotgun proteomics. Data are available via ProteomeXchange with identifier PXD012444. In the verification phase, the panel was verified in a larger set of KOA patients (n = 262). Finally, ITIH1 and ORM2 were qualified by a blind test in the whole MOVES cohort at baseline. The combination of these biomarkers with clinical variables predict the patients’ response to CS+GH with a specificity of 79.5% and a sensitivity of 77.1%. Conclusions: Combining clinical and analytical parameters, we identified one biomarker that could accurately predict KOA patients’ response to CS+GH treatment. Its use would allow an increase in response rates and safety for the patients suffering KOA.Insituto de Salud Carlos III; PI14/01707Instituto de Salud Carlos III; PI16/02124Insituto de Salud Carlos III; PI17/00404Instituto de Salud Carlos III; DTS17/00200Instituto de Salud Carlos III; CIBER-CB06/01/0040Insituto de Salud Carlos III; RETIC-RIER-RD16/0012/000

    Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis

    Get PDF
    Mutations in the NPHS1 gene cause congenital nephrotic syndrome of the Finnish type presenting before the first 3 months of life. Recently, NPHS1 mutations have also been identified in childhood-onset steroid-resistant nephrotic syndrome and milder courses of disease, but their role in adults with focal segmental glomerulosclerosis remains unknown. Here we developed an in silico scoring matrix to evaluate the pathogenicity of amino-acid substitutions using the biophysical and biochemical difference between wild-type and mutant amino acid, the evolutionary conservation of the amino-acid residue in orthologs, and defined domains, with the addition of contextual information. Mutation analysis was performed in 97 patients from 89 unrelated families, of which 52 presented with steroid-resistant nephrotic syndrome after 18 years of age. Compound heterozygous or homozygous NPHS1 mutations were identified in five familial and seven sporadic cases, including one patient 27 years old at onset of the disease. Substitutions were classified as ‘severe’ or ‘mild’ using this in silico approach. Our results suggest an earlier onset of the disease in patients with two ‘severe’ mutations compared to patients with at least one ‘mild’ mutation. The finding of mutations in a patient with adult-onset focal segmental glomerulosclerosis indicates that NPHS1 analysis could be considered in patients with later onset of the disease
    • 

    corecore