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Mutations in the NPHS1 gene cause congenital nephrotic

syndrome of the Finnish type presenting before the first 3

months of life. Recently, NPHS1 mutations have also been

identified in childhood-onset steroid-resistant nephrotic

syndrome and milder courses of disease, but their role in

adults with focal segmental glomerulosclerosis remains

unknown. Here we developed an in silico scoring matrix to

evaluate the pathogenicity of amino-acid substitutions using

the biophysical and biochemical difference between wild-

type and mutant amino acid, the evolutionary conservation

of the amino-acid residue in orthologs, and defined domains,

with the addition of contextual information. Mutation

analysis was performed in 97 patients from 89 unrelated

families, of which 52 presented with steroid-resistant

nephrotic syndrome after 18 years of age. Compound

heterozygous or homozygous NPHS1 mutations were

identified in five familial and seven sporadic cases, including

one patient 27 years old at onset of the disease. Substitutions

were classified as ‘severe’ or ‘mild’ using this in silico

approach. Our results suggest an earlier onset of the disease

in patients with two ‘severe’ mutations compared to patients

with at least one ‘mild’ mutation. The finding of mutations in

a patient with adult-onset focal segmental glomerulosclerosis

indicates that NPHS1 analysis could be considered in patients

with later onset of the disease.
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Idiopathic nephrotic syndrome (NS) represents a hetero-
geneous group of glomerular disorders occurring mainly in
children. It is generally divided into steroid sensitive (SSNS)
and steroid resistant (SRNS), depending on the patient’s
response to steroid therapy. Over the past decade, mutations
in genes encoding podocyte proteins have been identified in
several forms of hereditary NS.1–6

Mutations in the NPHS1 gene are responsible for
congenital NS of the Finnish type (CNF), which is an
autosomal recessive disorder characterized by massive
proteinuria often starting in utero.7 Kidney biopsy shows
irregular microcystic dilatation of proximal tubules8 and the
disease used to lead to death in the neonatal period, but
nowadays it can be treated by dialysis and nutritional
support, followed by renal transplantation in early child-
hood.9 The human NPHS1 gene is located at the long arm of
chromosome 19, 19q13.1, and contains 29 exons.10 The
protein product, termed ‘nephrin,’ is a putative member of
the immunoglobulin-like superfamily.11,12
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Mutations in the NPHS2 gene were initially described in
early onset SRNS.2 However, some cases with late onset
disease have been described by Tsukaguchi et al.13 and
Machuca et al.14 Variants in both NPHS1 and NPHS2 genes
have been reported to occur together in a few number of
families with congenital focal segmental glomerulosclerosis
(FSGS)15 or CNF,16 suggesting the presence of ‘oligogenicity’
in this disorder.

At present, more than 90 mutations in NPHS1 have been
identified. These mutations are scattered along the NPHS1
gene, most of them being private mutations.15–20 The high
percentage of NPHS1 missense mutations represents a
diagnostic challenge as in some cases it is difficult to
differentiate between disease-causing variant and a neutral
one. In silico approaches have recently been developed for the
evaluation of amino-acid substitutions in several human
disease genes.21–24 These approaches take into consideration a
combination of a multi-sequence alignment (MSA) of
orthologous proteins and a measure of the chemical
difference between the amino acids observed at the mutation
point. These factors were used as in silico predictors in a
scoring matrix for the evaluation of missense substitutions in
the NPHS1 gene.

Classically, NPHS1 mutations have been observed in
children presenting with NS within days after birth and
before 3 months of life.25 Recently, Philippe et al.26 identified
NPHS1 mutations in children with later onset SRNS
(between 5 months and 8 years). However, the role of
NPHS1 in adults with FSGS remains unknown. Our aim was
to study if NPHS1 mutations could be responsible not only
for congenital-onset and childhood-onset but also for
adult-onset FSGS.

RESULTS
Mutation analysis

NPHS1 mutation screening was performed in 97 patients
from 89 families by direct DNA sequencing. Homozygous
or compound heterozygous NPHS1 substitutions were

identified in 12 cases, of whom 1 was familial with two
affected siblings, 4 were only children of consanguineous
parents, and 7 were sporadic cases (Table 1). Two of these
twelve cases carried additional variants in the NPHS2 gene. In
one CNF case (patient 19) we found the p.R229Q NPHS2
variant in heterozygous state with two NPHS1 mutations.
Moreover, two compound heterozygous NPHS2 variants
(p.P20L and p.E237Q) in conjunction with a homozygous
NPHS1 mutation were detected in one patient with FSGS
congenital NS (patient 41; Table 2).

In addition, only a single pathogenic NPHS1 mutation
was identified in two patients with sporadic SRNS, one of
them (patient 88) carrying also the p.R408Q NPHS1 neutral
variant in heterozygosity (Table 2). Moreover, we identified
two siblings with only one NPHS1 mutation and the p.P20L
variant in the NPHS2 gene (family 21).

NPHS1 variants of unknown significance (p.N188I and
p.P264R) were heterozygous in two cases (Table 2) and four
patients carried a single new highly neutral NPHS1 variant
(p.Q259E in one case, p.L392P in three cases). Finally, the
p.R408Q neutral variant was found in seven cases without
any other variant in compound heterozygosity.

On the other hand, causative mutations in either NPHS2
or WT1 gene were found in eight cases (unpublished results),
bearing no NPHS1 variants. These patients were also
screened for TRPC6, ACTN4, and CD2AP and no mutations
were found.

The detection rate of NPHS1 mutations for familial cases
was 38% (5 of 13) and 10% (7 of 76) for sporadic cases.
Patients with only one NPHS1 mutation were not included to
calculate this mutation detection rates (Table 1). If we discard
patients clinically diagnosed as CNF, mutations were
identified in 27% (3 of 11) of the familial cases and 6%
(4 of 73) of the sporadic cases studied in the present paper.
The frequency of NPHS1 mutations in adults was 2% (1 of
52) but seven times higher in children (14%, 3 of 22).

Of the 25 NPHS1 substitutions hereby detected, 72% (18
of 25) were missense. A large majority of these missense

Table 1 | Overview of genotypic and phenotypic data

Familial
SRNS

Sporadic
SRNS

Congenital
onset

Early
childhood

onset

Late
childhood

onset
Adolescent

onset
Adult
onset

No. of patients (families) studied 21 (13) 76 (76) 11 (10) 21 (16) 8 (6) 5 (5) 52 (52)
No. of patients (families) with two NPHS1 mutations 6 (5) 7 (7) 8 (8) 3 (2) 1 (1) 1 (1)
Mutation detection rate 38.5% 10% 80% 13% 17% 2%
No. of patients (families) with one NPHS1 mutation 2 (1) 2 (2) 2 (1) 2 (2)
No. of patients (families) with one NPHS1 variant
of unknown effect

2 (2) 2 (2)

Age at onset in patients with 2 ‘severe’ NPHS1 mutations 1.1±1.2 months; n=8 patients

Age at onset in patients with 1 ‘mild’/1 ‘severe’ or 2
‘mild’ NPHS1 mutations

100±130 months; n=5 patients

SRNS, steroid-resistant nephrotic syndrome.
When 2 members of a single family presented an age at onset of the disease that fell between two different categories, we included both in the category of the patient
presenting the earlier age at onset of NS.
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Table 2 | Clinical data of patients with SRNS and NPHS1 substitutions

Patient Gender

Age of
onset NS
(months)

Renal
biopsy Therapy Evolution

Tx/
Recurrence

NPHS1
mutation 1
(MG)a

NPHS1
mutation 2
(MG)a

NPHS2
variants

Patients with CNFb

18 M 0.6 CNF — ESRD at 4 years Yes/No c.1701C4A
p.C567X (A)

c.2417C4G
p.A806D (B)

Not identified

19 F 0.2 CNF — ESRD at 1 year Yes/2 Txc c.1701C4A
p.C567X (A)

c.3343G4T
p.E1115X (A)

c.686G4A
p.R229Q

20 M 0.2 CNF — ESRD at 1 year Yes/2 Txc c.1701C4A
p.C567X (A)

c.1868G4T
p.C623F (B)

Not identified

38d F 1 Not
performed

— ESRD at 1 year No c.2540_43del
p.T847fsX903 (A)

c.2540_43del
p.T847fsX903 (A)

Not identified

256d M 1 Not
performed

— ESRD at 3 months No c.1379G4A
p.R460Q (I)e

c.1379G4A
p.R460Q (I)e

Not identified

Patients with congenital FSGSb

40d M 3 FSGS Cs ESRD at 2 years Yes/2 Txc c.2143G4C
p.G715R (B)

c.2143G4C
p.G715R (B)

Not identified

41d M 3 FSGS Cs Normal Cr at 3 years No c.1538T4C
p.L513P (B)

c.1538T4C
p.L513P (B)

c.59C4T
p.P20 L+
c.709G4C
p.E237Q

177 F 0 DMS — CKD stage IV at
2 years

No c.139delG
p.A47fsX127 (A)

c.3478C4T
p.R1160X (A)

Not identified

Patients with childhood FSGSb

79-1f F 72 FSGS Cs, CsA, MMF Normal Cr at 15 years No c.1099 C4T
p.R367C (B)

c.361G4A
p.E121K (I)

Not identified

79-2f M 12 FSGS* Cs, CsA Normal Cr at 7 years No c.1099 C4T
p.R367C (B)

c.361G4A
p.E121K (I)

Not identified

182 F 84 FSGS Cs, CsA, CP Normal Cr at 11 years No c.1379G4A
p.R460Q (I)e

c.2928G4T
p.R976S (B)g

Not identified

198 F 8 FSGS Cs, CsA Normal Cr at 2 years No c.791C4G
p.P264R (C)

c.2026C4T
p.P676S (I)

Not identified

Patient with adulthood FSGSb

140 F 324 FSGS* Cs, CP, Tacroh Normal Cr at 29 years No c.2479C4A
p.R827X (A)

c.2928G4T
p.R976S(B)g/
c.2971G4C
p.V991 L (NV)i

Not identified

Patients with one NPHS1 mutation
21-1f F 24 FSGS Cs, CsA, MMF Normal Cr at 8 years No c.3250_3251insG

p.V1084fsX1095 (A)
Not identified c.59C4T

p.P20 L
21-2f M 24 FSGS Cs, CsA, MMF Normal Cr at 6 years No c.3250_3251insG

p.V1084fsX1095 (A)
Not identified c.59C4T

p.P20 L
85 M 115 FSGS Cs, CsA, CP ESRD at 12 years Yes/Yes c.3250_3251insG

p.V1084fsX1095 (A)
Not identified Not identified

88 F 132 FSGS* Cs, CsA, CP ESRD at 14 years Yes/Yes c.1610C4T
p.T537 M (B)

c.1223G4A
p.R408Q (P)

Not identified

Patients with one NPHS1 variant of unknown effect
122 M 324 FSGS Cs, CsA ESRD at 28 years Yes/Yes c.563A4T

p.N188I (I)
Not identified Not identified

189 F 348 FSGS Cs, CsA ESRD at 34 years Yes/Noc c.791C4G
p.P264R (C)

Not identified Not identified

CKD, chronic kidney disease; CP, cyclophosphamide; Cr, creatinine; Cs, corticosteroids; CsA, cyclosporin A; DMS, diffuse mesangial sclerosis; ESRD, end-stage renal disease;
F, female; FSGS, focal segmental glomerulosclerosis; FSGS*, mesangioproliferative lesions with FSGS; M, male; MMF, mophetil micophenolate; Tacro, tacrolimus; Tx, kidney
transplantation.
aNPHS1 mutations, defined in this table as substitutions detected in the NPHS1 gene; MG, mutation group (classification of NPHS1 substitutions according to Table 3).
bThese patients presented with 2 NPHS1 mutations in homozygous or heterozygous state.
cThese patients presented with chronic rejection nephropathy.
dOnly child of consanguineous parents.
eThis mutation has previously been described in patients with a severe phenotype.25

fSiblings with the same parents.
gThis mutation has previously been described in patients with a mild phenotype.26

hThis patient responded partially to CP treatment and she is now treated with angiotensin-converting enzyme inhibitor and Tacro.
iThis patient has 3 heterozygous missense substitutions, but the p.V991L was considered a neutral variant.
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changes were within the immunoglobulin motifs of the
extracellular domain. As shown in Table 3, nine variants were
novel (36%), consisting of seven missense, one nonsense, and
one frameshift mutation. Although most mutations in this
gene are private, we identified one mutation (p.C567X) in
three out of five nonrelated patients with CNF (60%).
Moreover, the p.R408Q neutral variant has an allele
frequency of 4.5% (8 of 178 alleles) and the p.L392P neutral
variant of 2% in our population with SRNS. Four more
variants were present in at least more than one patient:
p.P264R (exon 7), p.R460Q (exon 11), p.R976S (exon 22),
and p.V1084fsX1095 (exon 24). No other hot spot was found
in the NPHS1 gene in the present study.

Classification of substitutions

Of the seven new missense substitutions, p.L513P, p.T537M,
and p.G715R were classified as highly likely pathogenic
mutations (mutation group (MG)¼B) by our in silico
scoring system analysis, p.E121K and p.P676S were classified
as variants of unknown pathogenicity (MG¼ I), and finally,
p.Q259E and p.L392P were classified as highly neutral
variants (MG¼NV) (Table 3). It is noteworthy that we
identified three different amino-acid changes in heterozygous
state in one patient (patient 140). One of them was a stop
codon (p.R827X) in exon 18 and the remaining ones
(p.R976S and p.V991L) were missense substitutions located
in the fibronectin type III domain. Our scoring system
analysis classified the p.V991L substitution as neutral variant.
All new nonsense and frameshift mutations were predicted to
result in a truncated protein.

The p.R976S variant (MG¼B) should be considered a
‘severe’ mutation (see Materials and Methods) but it had
previously been described in patients with a mild pheno-
type15,26 and therefore was considered as ‘mild’ mutation.
Even though the p.R460Q variant was predicted to be a
variant of unknown effect (MG¼ I) by our in silico scoring
system, it was considered a severe mutation because it had
previously been identified in cases of CNF.18,25,27,28

Genotype–phenotype correlations

The mean age at onset of the disease in patients with
congenital NS and compound heterozygous or homozygous
NPHS1 mutations was 1.1 month (from birth to 3 months)
(Table 1). This group includes five patients with CNF, one
with diffuse mesangial sclerosis, and two with congenital
FSGS and SRNS (they did not receive immunosuppressant
treatment). Among them, five patients had developed end-
stage renal disease (ESRD) with a time interval of 1.7 years
(range 1–4 years) from the onset of the disease to the
development of ESRD. Although no disease recurrence was
observed in four patients who received renal allograft, two of
them developed chronic rejection nephropathy the first time
they were transplanted. Moreover, patient 40 developed
chronic rejection nephropathy both times he was trans-
planted (Table 2). Seven of the eight patients carried two
NPHS1 mutations classified as MG¼A or MG¼B (severe

mutations). Patient 256 was homozygous for the p.R460Q
mutation (MG¼ I).

The mean age at onset of disease in patients with
childhood-onset NS and two NPHS1 variants was 3.6 years
(from 8 months to 7 years). Renal biopsy revealed
mesangioproliferative lesions with FSGS in one patient and
FSGS in three patients. These patients were resistant to
corticosteroids as well as immunosuppressant drugs. At the
end of follow-up, none of these patients had reached ESRD.
All of them were compound heterozygous for at least one
mutation classified as MG¼C or MG¼ I (mild mutations).

The adult patient was diagnosed at 27 years of age and
after 2 years of follow-up her renal function remains
unimpaired. Renal biopsy of this patient showed FSGS and
she responded partially to immunosuppressive treatment and
angiotensin-converting enzyme inhibitor (proteinuria de-
creased to 3 g/24 h). In this patient, we detected two
mutations classified as MG¼A (p.R827X) and MG¼B
(p.R976S), and one neutral variant (p.V991L). We confirmed
that p.R827X is from maternal and p.R976S from paternal
origin.

The mean age at onset of NS in patients with one
pathogenic NPHS1 mutation identified was 6 years (from 2
to 11 years of age). The entire group of patients was resistant
to corticosteroids as well as immunosuppressive treatment.
At the end of follow-up, two patients had reached ESRD at 12
and 14 years of age. Two of them were transplanted and
developed recurrence of proteinuria after kidney transplanta-
tion (Table 2). Finally, two patients with one variant of
unknown significance developed SRNS in their adulthood
and both reached ESRD. One of them developed recurrence
of proteinuria after kidney transplantation.

DISCUSSION

NPHS1 mutations have been considered to cause a life-
threatening disorder such as CNF for a long time. Although it
is strictly true, Philippe et al.26 have recently shown that
patients carrying at least one ‘mild’ mutation have a much
less severe phenotype than CNF. These results prompted us to
look for mutations in this gene in an adult cohort of FSGS
patients. The finding of a patient carrying two mutations in
NPHS1 and developing SRNS at 27 years of age shows that
NPHS1 mutations cause a renal disease that ranges from CNF
to SRNS in childhood or adulthood. Similarly, it has been
reported that congenital NS, previously only attributed to
NPHS1 mutations, is frequently caused by NPHS2 muta-
tions;15,25 furthermore, NPHS2 mutations have been found
in adults with FSGS13,29,30 and we have recently detected a
child with FSGS and a TRPC6 mutation,31 although
mutations in this gene had been described only in adults.
Moreover, not only different genes are involved in SRNS but
a combination of variants in different genes within the same
individual may account for some cases of SRNS.15,16,25,32 In
the present study, we describe three cases with substitutions
in both NPHS1 and NPHS2 genes (Table 2): one case (family
21) with one NPHS1 mutation and one heterozygous NPHS2

Kidney International (2009) 76, 1268–1276 1271

S Santı́n et al.: NPHS1 in adults with FSGS o r i g i n a l a r t i c l e



Table 3 | Classification of NPHS1 substitutions

NPHS1
substitutions Exon

Previous
description GDa GVb

GD/GV
matrix
scorec GDevd

Defined domain
(degree of
conservation)e

Splicing
predictionf

Control
chromo-
somes

Described
in SNP
database

Polyphen
predictiong

SIFT
predicted
toleratedh VSi MGj

Positive controls
Protein is retained in endoplasmic reticulum: ‘severe mutation’26

R367C 9 15,17,18 180 85 +4 127 (0) Ig 4 (HC) (+4) Not predicted
(0)

0/6017 (+2) No (+1) 2.16 (probably
damaging) (+2)

No (+2) 15 B

C623F 14 15–18,25 205 0 +8 205 (+2) Ig 6 NHC) (+2) Not predicted
(0)

0/6017 (+2) No (+1) 3.30 (probably
damaging) (+2)

No (+2) 19 B

A806D 18 17,18 126 64 +3 124 (+2) Ig 7 (NHC) (+2) Not predicted
(0)

0/6017 (+2) No (+1) 1.85 (possibly
damaging) (+1)

No (+2) 13 B

L832P* 18 26 98 0 +6 98 (+2) Ig 7 (NHC) (+2) Not predicted
(0)

0/18226 (+2) No (+1) 2.20 (probably
damaging) (+2)

No (+2) 17 B

Protein traffics normally in the cell: ‘mild mutation’26

L96V* 3 26 32 0 +2 32 (+2) Ig 1 (NHC) (+2) Not predicted
(0)

0/18826 (+2) No (+1) 1.34 (possibly
benign) (�1)

No (+2) 10 C

A107T* 3 26 58 60 �2 30 (+1) Ig 1 (NHC) (+2) Not predicted
(0)

0/18826 (+2) No (+1) 1.50 (possibly
benign) (�1)

No (+2) 5 C

R460Q 11 15,16,18,25,26 43 139 �2 12 (+1) Ig 5 (C) (+3) Not predicted
(0)

0/19026 (+2) No (+1) 1.40 (possibly
benign) (�1)

Yes (�2) 2 I

P575Q* 13 26 76 58 �2 41 (+1) Ig 6 (NHC) (+2) Not predicted
(0)

0/17626 (+2) No (+1) 1.80 (possibly
damaging) (+1)

No (+2) 7 C

R976S 22 26 110 0 +6 110 (+2) FTIII (C) (+3) Normal
AS:0.95
Mutant
AS:0.79(0)

0/35226 (+2) No (+1) 2.20 (probably
damaging) (+2)

No (+2) 18 B

Negative controls
E117K 3 17–19 56 54 �2 22 (+1) Ig 1 (NHC) (+2) Not predicted

(0)
22/6017 k (�2) Yes (�1) 1.60 (possibly

damaging) (+1)
Yes (�2) �3 NV

R408Q 10 17–19 43 103 �2 17 (+1) Ig 4 (HC) (+4) Not predicted
(0)

4/6017 (�2) Yes (�1) 1.75 (possibly
damaging) (+1)

Yes (�2) �1 NV

N1077S 24 17–19 46 241 �2 0 (�2) No (0) Normal AS:0.71
Novel AS:0.89(0)

2/6017 k (�2) Yes (�1) 1.84 (possibly
damaging) (+1)

No (+2) �4 NV

No functional study performed
N188I 5 15 149 145 0 10 (�2) Ig 2(NHC) (+2) Not predicted

(0)
0/36215 (+2) No (+1) 1.80 (possibly

damaging) (+1)
Yes (�2) 2 I

P264R 7 15,18,32 103 98 �2 46 (+1) Ig 3(C) (+3) Not predicted
(0)

0/36215 (+2) Yes (�1) 1.93 (possibly
damaging) (+1)

No (+2) 6 C

V991L 22 16 32 51 �2 0 (�2) O (�4) Not predicted
(0)

0/19616 (+2) Yes (�1) 0.89 (benign)
(�2)

Yes (�2) �11 NV

Novel missense variants identified in our cohort
E121K 3 Novel 56 124 �2 37 (+1) Ig 1(NHC) (+2) Not predicted

(0)
0/200 l (+2) No (+1) 1.35 (possibly

benign) (�1)
Yes (�2) 1 I

Q259E 7 Novel 29 82 �4 0 (�2) O (�4) Not predicted
(0)

0/200 l (+2) No (+1) 0.25 (benign)
(�2)

Yes (�2) �11 NV

L392P 7 Novel 98 181 �2 0 (�2) O (�4) Not predicted
(0)

2/200 l (�2) Yes (�1) 1.43 (possibly
benign) (�1)

Yes (�2) �14 NV

L513P 12 Novel 98 5 +6 95 (+2) Ig 5(C) (+3) Not predicted
(0)

0/200 l (+2) No (+1) 2.07 (probably
damaging) (+2)

No (+2) 18 B

T537M 12 Novel 81 0 +6 81 (+2) Ig 5(C) (+3) Not predicted
(0)

0/200 l (+2) No (+1) 2.05 (probably
damaging) (+2)

No (+2) 18 B

P676S 15 Novel 74 95 �2 34 (+1) No (0) Not predicted
(0)

0/200 l (+2) No (+1) 1.7 (possibly
damaging) (+1)

Yes (�2) 1 I

G715R 16 Novel 125 0 +6 125 (+2) No (0) Not predicted
(0)

0/200 l (+2) No (+1) 2.3 (probably
damaging) (+2)

No (+2) 15 B

Nonsense/frameshift substitutions
A47fsX127 1 20 NR NR NR NR NR NR NR NR NR NR NR A
C567X 13 18 NR NR NR NR NR NR NR NR NR NR NR A
T847fsX903 19 Novel NR NR NR NR NR NR NR NR NR NR NR A
R827X 18 16,26 NR NR NR NR NR NR NR NR NR NR NR A
V1084Xfs
X1095

24 10,20 NR NR NR NR NR NR NR NR NR NR NR A

Table 3 continued on the following page
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variant; one patient (patient 19) with two recessive NPHS1
mutations and the p.R229Q NPHS2 variant; and finally, one
patient with ‘four-allelic hit’ (patient 41): one homozygous
NPHS1 mutation and two NPHS2 variants. This group
includes one family with early onset SRNS, one congenital
FSGS, and one case of CNF. Contrary to these findings,
Koziell et al.15 reported substitutions in both NPHS1
and NPHS2 genes in cases with congenital FSGS. All
patients reported in the literature and in the present study
show two recessive mutations in one of these genes, which
seem to be sufficient to explain their phenotype. Generally,
the substitution identified in the other gene can be
considered as a variant. Moreover, no significant clinical
difference was observed between patients with CNF and with
or without a third hit in one of these genes. In these three
cases, our data do not suggest that patients with combined
variants in NPHS1 and NPHS2 would result in phenotypic
modification.

Missense mutations are the type most frequently found in
this study (72%). As previously reported by Philippe et al.,26

we tried to classify these substitutions as ‘severe’ or ‘mild’. We
used previously reported NPHS1 missense mutations and
polymorphisms for which functional assays have been already
carried out26,33 to test the performance of our in silico scoring
matrix for the NPHS1 gene (Table 3). The resulting
phenotype from missense mutations might depend on
functional effects such as intracellular nephrin trafficking
because some mutant proteins are retained in the endoplas-
mic reticulum.26,33 According to these data, nonsense and
frameshift mutations, which are predicted to result in a
truncated protein, were considered severe as were missense
mutations preventing nephrin from reaching the plasma
membrane. These missense substitutions were classified by
our in silico scoring system analysis as highly likely
pathogenic mutations (MG¼B). On the other hand,
missense substitutions were designated as mild when

functional analysis demonstrated partial maintenance of the
protein function.26,33 In our in silico system, these missense
substitutions were classified as likely mutations (MG¼C) or
variants of unknown effect (MG¼ I), whereas p.E117K and
p.N1077S, which have been found as homozygous changes in
healthy controls,17,18 were classified as neutral variants
(MG¼NV) (Table 3). The new nonsense, frameshift and
p.L513P, p.T537M, and p.G715R missense mutations found
in our study cohort were classified by our in silico scoring
system as MG¼A or MG¼B and were therefore classified as
severe. The other two new missense variants (p.E121K and
p.P676S) were classified as variants of unknown effect
(MG¼ I) and were consequently classified as mild. The
p.R408Q variant, which is found in B6%17,19 of healthy
controls in heterozygosity, was classified by our scoring
system as a neutral variant. Interestingly, the homozygous
p.R408Q variant has not been identified so far in control
subjects. Even though we did not find a significant higher
frequency in our population of patients with SRNS (4.5%)
and it has been shown in vitro to reach the cell membrane,33

studies involving greater numbers of patients will be needed
to determine the significance of this variant.

In spite of the strict method used to classify missense
variants, there were some discrepancies between genetic,
functional, and phenotypic data. For instance, although the
p.R976S variant is predicted to be a highly likely pathogenic
mutation (MG¼B), it had previously been classified as a
mild mutation by Philippe et al.26 because this mutant
nephrin maintains its capacity to traffic in the cell membrane.
However, its capacity to homodimerize and heterodimerize
with NEPH1 has not been tested.26 Another example is the
p.R460Q mutant, which is predicted to be a tolerated variant
and has been shown to traffic normally in the cell membrane
and to homodimerize and heterodimerize with NEPH1,
however, it had previously been identified in homozygosity
in cases of CNF,18,25,27 suggesting that this mutation may

Table 3 | Continued

NPHS1
substitutions Exon

Previous
description GDa GVb

GD/GV
matrix
scorec GDevd

Defined domain
(degree of
conservation)e

Splicing
predictionf

Control
chromo-
somes

Described
in SNP
database

Polyphen
predictiong

SIFT
predicted
toleratedh VSi MGj

E1115X 26 Novel NR NR NR NR NR NR NR NR NR NR NR A
R1160X 27 15–18,20,25 NR NR NR NR NR NR NR NR NR NR NR A

NR, not required; SIFT, sort intolerant from tolerant algorithm.
*Substitutions not detected in our cohort of patients.
aGD (Grantham distance); score of chemical difference between the normal and mutated residue (high score, greater difference).
bGV (Grantham variation); score of chemical difference between 14 orthologs (ranging from orangutan to fruit fly) (0=completed conserved).
cGD/GV matrix score; lower matrix scores corresponded to low GD and high GV (conservative change and strong variation within the MSA), whereas higher matrix scores
corresponded to high GD and low GV (nonconservative change and strong conservation within the multi-sequence alignment).
dGDev (Grantham deviation); score of chemical difference between the mutated residue and the range of variation between orthologs (GD similar to GDev, higher difference).
eDomain-containing residue: Ig-like C2 type domains (1–8), fibronectin type II (FTIII), Cter (1160–1241): binding to podocin. C, conserved (80–50%); domains; HC, highly
conserved (480%); NHC, not highly conserved (49–30%); No, not defined.
fNot predicted by Splice Site Prediction Neural Network. Score of the acceptor site (AS).
gPolyphen assessment; ratio Polyphen 42 (probably damaging), ratio Polyphen 41 (possibly damaging), ratio Polyphen o1 (benign).
hSIFT tolerated; not tolerated, tolerated.
iVariant score (VS).
jVS 4 11 - mutation group (MG)=B; VS=5–10-MG=C; VS=0–4-MG=I; VS o�1-MG=NV; A, pathogenic; B, highly likely pathogenic; C, likely pathogenic; I, unknown
pathogenicity; NV, neutral variant.
kThese substitutions have been founded in control subjects in homozygous state.
lThis report.
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disrupt other structural or functional properties of ne-
phrin.34–36 Therefore, it seems that functional or in silico
analysis is a good tool to differentiate between mutations
and polymorphisms but is not an infallible method
to differentiate between mild and severe missense
mutations.

We have found recessive mutations in five familial and
seven sporadic cases, of which eight had congenital-onset,
three had childhood-onset, and finally, one presented with
adult-onset FSGS. Our data suggest that patients with two
NPHS1 severe mutations seem to present congenital onset of
the disease, whereas patients with at least one mild NPHS1
mutation present an early or late childhood onset of the NS,
as reported by Philippe et al.26 On the basis of this
hypothesis, we expected patients with two mild NPHS1
mutations to debut with an adulthood FSGS. However, the
two NPHS1 mutations identified in the adult patient (patient
140) were one nonsense mutation (p.R827X) and the
p.R979S missense mutation, which has been considered a
mild mutation. Conversely, two probably mild mutations
were identified in patient 198 (p.P264R and p.P676S)
presenting with an early childhood onset of NS. Therefore,
we did not find any apparent difference between being a
carrier of two mild mutations or one mild and one severe
mutation. Interestingly, exactly the same combination of
NPHS1 mutations found in the adult patient has also been
identified in one case with an age at onset of NS at 9
months.26 Thus, modifying genes and environmental factors
may account for the late onset of disease and the preservation
of renal function 2 years after the diagnosis. This patient was
the sole adult patient with compound heterozygous NPHS1
mutations, which means that it is very uncommon to
find two mutations in the NPHS1 gene in adult patients
with FSGS.

This limited cohort of patients carrying NPHS1 mutations
showed no response to immunosuppressive therapy. Only the
adult patient reduced her rate of proteinuria from nephrotic
to non-nephrotic with immunosuppressive therapy and
angiotensin-converting enzyme inhibitor. Although our
patients with CNF and severe mutations did not respond
to any therapy, it has been reported that some missense
mutations lead to milder therapy response forms of CNF.
Furthermore, no patient in this cohort with two mutations in
the NPHS1 gene showed recurrence of proteinuria after
transplantation, which supports the theory that only patients
with the Fin major mutation in homozygosity, which implies
a total loss of the protein, develop antibodies able to attack
the slit diaphragm.37

In conclusion, this is the first description of NPHS1
mutations being the cause of FSGS in adults. This is a clear
example of how much work is still needed to understand well
the pathogenesis of SRNS and FSGS. Many more genes than
those already known may be involved in this disease.
Moreover, those already known may account for totally
unexpected phenotypic expression, and interactions among
them also remain to be elucidated in depth.

MATERIALS AND METHODS
Patients
Mutation screening was performed in a cohort of 97 Spanish
familial and sporadic cases with SRNS. Among them, 21 patients
belonging to 13 families were considered as familial cases, defined
either as families in which two members of a single generation were
affected (N¼ 8) or families in which one affected child was the
product of a consanguineous relationship (N¼ 5). Seventy-six
patients presented with sporadic SRNS (Table 1).

We classified our population, according to the age at onset of the
disease (mean±s.d.), as: congenital (o3 months; 1.2±1 month;
N¼ 10, including five CNF cases), early childhood (43 months to 5
years; 21.4±15.4 months; N¼ 21), late childhood (6–12 years;
98.8±30.8 months; N¼ 8), adolescent (13–18 years; 15.6±1.7 years;
N¼ 5), and adult (418 years; 33.3±9.7 years; N¼ 52).

Patients that were born prematurely, presented with a large
placenta and severe proteinuria at birth or had proven renal biopsy
were classified as CNF. The NS was resistant to corticosteroids in all
cases. When additional treatments (cyclosporine A, cyclopho-
sphamide, or mycophenolate) were attempted, 10 of 48 patients
responded partially or completely. Renal biopsy was available in the
entire group of 52 patients with adult –onset NS. Thirty-seven
patients showed FSGS, one patient mesangial IgM, three patients
minimal change NS, and eleven patients mesangioproliferative
lesions with FSGS, defined by the Columbia FSGS classification
system.38

In this work, we will refer to the number of patients studied
when assessing clinical data and to the number of families studied
when assessing genetic data, because affected siblings may follow a
different clinical course but should bear the same mutations.

Mutation analysis
Peripheral blood samples were obtained after informed consent of
patients or their parents. Genomic DNA was isolated from
peripheral blood samples using the ‘salting out’ method.39 Mutation
analysis of NPHS1 gene was carried out by direct sequencing using
previously described primers17 and using the Big Dye terminator
method (Applied Biosystems, Foster City, CA, USA). In this cohort
of patients, NPHS2, WT1, TRPC6, ACTN4, and CD2AP sequencing
analysis was also performed as previously described.5,28 Segregation
of the detected variants was confirmed by direct sequencing of
parental DNA samples when available.

Classification of substitutions
To classify missense substitutions as a deleterious/high-risk variants
or as neutral/little clinical significance, we have developed an in silico
scoring system based on previous reports,21–24,40 taking into account
seven types of data: (1) the biophysical and biochemical difference
between the wild-type and the mutant amino acid (Grantham
distance);40 (2) the evolutionary conservation of the amino-acid
residue in an MSA of ortholog nephrin proteins (Grantham
variation).21 Grantham variation was defined as the largest
Grantham distance for a specific position within the MSA. The
MSA was generated using ClustalW software (http://www.ebi.ac.
uk/tools/clustalw2).41 Sequences were obtained from NCBI or
ENSEMBL (human, chimpanzee, orangutan, rhesus monkey, cow,
dog, mouse, rabbit, gray opossum, xenopus, zebrafish, mosquito,
fruit fly); (3) the distance between the mutant amino acid and the
range of variation present at their position in MSA (Grantham
deviation);22 (4) evaluation of each variant for affecting splicing
using the algorithm known as the Neural Network Splice Site
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Prediction; (5) identification of the defined domains (immunoglo-
bulin-like (1–8), fibronectin type III, and the region binding
to podocin (encoding by NPHS2 gene)) using UniProtKB/Swiss-
Prot program and the published literature;17 (6) inclusion of
contextual information: population data such as previous descrip-
tion of the variant in databases (as derived from the Human Gene
Mutation Database and the Single Nucleotide Polymorphism
Database). When a missense variant was not previously described,
we analyzed 200 normal chromosomes (matched by ethnicity and
geography with the study cohort); and (7) evaluation of variants
using ‘sort intolerant from tolerant’ (SIFT) (http://sift.jcvi.org)42

and ‘Polymorphism Phenotype’ (Polyphen) (http://genetics.bwh.
harvard.edu/pph)43 programs.

We assigned points for each of these factors, the sum of which
resulted in an overall variant score (VS) (as previously suggested
by Rossetti et al.23). The overall VS was classified into four
groups, specifically VS equal to or less than �1 (MG¼NV, highly
neutral variant), VS between 0 and 4 (MG¼ I, unknown effect
variant), VS between 5 and 10 (MG¼C, likely pathogenic), and VS
higher than 11 (MG¼B, highly likely pathogenic). Nonsense and
frameshift mutations were classified as MG¼A (pathogenic
mutations).

The scoring matrix was tested using previously described and
classified amino-acid substitutions for which functional studies had
been performed as positive controls (pathogenic variants, positive
training set) or negative controls (neutral variants/polymorphisms,
negative training set) (Table 3). The values assigned to each specific
factor are inspired by the scoring matrix developed for the PKD1/2
genes23 with some minor modifications following the testing and
training of the scoring matrix to the NPHS1 gene. The trained
scoring matrix was then used to evaluate the actual amino-acid
substitutions found in our study cohort.

We attempted to classify these mutations as either ‘severe’ or
‘mild’ on the basis of the suggestive data by Philippe et al.26 Nephrin
mutations were classified as severe when they were predicted to
result in a truncated protein (MG¼A) or as highly likely missense
mutations (MG¼B) by our scoring system analysis. On the other
hand, missense mutations classified as MG¼C or variants of
unknown effect MG¼ I were designated as mild.
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Appendix

Hospital Universitario La Fe: Santiago Mendizábal; Hospital
Infantil La Paz: Laura Espinosa, Carmen Garcı́a, Marta
Melgosa, Mercedes Navarro; Hospital Vall d’Hebron: Joan
López-Hellin, Sara Chocrón, José Luciano Nieto, Ramón
Vilalta, Clara Ventura; Hospital Sant Joan de Déu: Antonio
Giménez, Jorge Vila Cots; Hospital Infantil Universitario
Virgen del Rocı́o: Francisco de la Cerda; Hospital Universitario
de Canarias: Eduardo Salido; Fundación Jiménez Dı́az:
Simona Alexandra, Carlos Caramelow, Jesús Egido; Hospital
General Universitario Gregorio Marañón: Maria Dolores
Morales San José; Hospital de Barcelona: Pere Sala, Frederic
Raspall, Ángel Vila; Hospital Torrecárdenas: Antonio Marı́a
Daza; Hospital Niño Jesús: Mercedes Vázquez, José Luis Écija;
Hospital Universitario Reina Sofı́a: Mario Espinosa; Hospital
Princeps d’España: Rafael Poveda; Hospital Clı́nic de Barce-
lona: Eduard Mirapeix; Hospital de niños Ricardo Gutiérrez:
Graciela Vallejo; Hospital Universitario de Getafe: Cristina
Aparicio; Hospital Materno-Infantil Son Dureta: Jordi Rosell;
Hospital Infantil doce de Octubre: Rafael Muley; Hospital de
Galdakao: Jesús Montenegro; Hospital Universitario Marqués
de Valdecilla: Domingo González; Hospital Universitario
Virgen de las Nieves: David Barajas de Frutos; Hospital Son
Llàtzer: Esther Trillo; Hospital Universitario Virgen de la
Arrixaca: Salvador Gracia; Hospital de Cruces: Francisco Javier
Gainza de los Rı́os.
w, Deceased.
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