80 research outputs found

    Cognitive functions in children and adults with Moyamoya Vasculopathy: A systematic review and meta-analysis

    Get PDF
    Background and Purpose Patients with moyamoya vasculopathy (MMV) may experience cognitive impairment, but its reported frequency, severity, and nature vary. In a systematic review and meta-analysis, we aimed to assess the presence, severity, and nature of cognitive impairments in children and adults with MMV. Methods We followed the MOOSE guidelines for meta-analysis and systematic reviews of observational studies. We searched Ovid Medline and Embase for studies published between January 1, 1969 and October 4, 2016. Independent reviewers extracted data for mean intelligence quotient (IQ) and standardized z-scores for cognitive tests, and determined percentages of children and adults with cognitive deficits, before and after conservative or surgical treatment. We explored associations between summary measures of study characteristics and cognitive impairments by linear regression analysis. Results We included 17 studies (11 studies reporting on 281 children, six on 153 adults). In children, the median percentage with impaired cognition was 30% (range, 13% to 67%); median IQ was 98 (range, 71 to 107). Median z-score was –0.39 for memory, and –0.43 for processing speed. In adults, the median percentage with impaired cognition was 31% (range, 0% to 69%); median IQ was 95 (range, 94 to 99). Median z-scores of cognitive domains were between –0.9 and –0.4, with multiple domains being affected. We could not identify determinants of cognitive impairment. Conclusions A large proportion of children and adults with MMV have cognitive impairment, with modest to large deficits across various cognitive domains. Further studies should investigate determinants of cognitive deficits and deterioration, and the influence of revascularization treatment on cognitive functioning

    The Boston criteria version 2.0 for cerebral amyloid angiopathy:a multicentre, retrospective, MRI–neuropathology diagnostic accuracy study

    Get PDF
    BACKGROUND: Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease, characterised pathologically by progressive deposition of amyloid β in the cerebrovascular wall. The Boston criteria are used worldwide for the in-vivo diagnosis of CAA but have not been updated since 2010, before the emergence of additional MRI markers. We report an international collaborative study aiming to update and externally validate the Boston diagnostic criteria across the full spectrum of clinical CAA presentations. METHODS: In this multicentre, hospital-based, retrospective, MRI and neuropathology diagnostic accuracy study, we did a retrospective analysis of clinical, radiological, and histopathological data available to sites participating in the International CAA Association to formulate updated Boston criteria and establish their diagnostic accuracy across different populations and clinical presentations. Ten North American and European academic medical centres identified patients aged 50 years and older with potential CAA-related clinical presentations (ie, spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes), available brain MRI, and histopathological assessment for CAA diagnosis. MRI scans were centrally rated at Massachusetts General Hospital (Boston, MA, USA) for haemorrhagic and non-haemorrhagic CAA markers, and brain tissue samples were rated by neuropathologists at the contributing sites. We derived the Boston criteria version 2.0 (v2.0) by selecting MRI features to optimise diagnostic specificity and sensitivity in a prespecified derivation cohort (Boston cases 1994-2012, n=159), then externally validated the criteria in a prespecified temporal validation cohort (Boston cases 2012-18, n=59) and a geographical validation cohort (non-Boston cases 2004-18; n=123), comparing accuracy of the new criteria to the currently used modified Boston criteria with histopathological assessment of CAA as the diagnostic standard. We also assessed performance of the v2.0 criteria in patients across all cohorts who had the diagnostic gold standard of brain autopsy. FINDINGS: The study protocol was finalised on Jan 15, 2017, patient identification was completed on Dec 31, 2018, and imaging analyses were completed on Sept 30, 2019. Of 401 potentially eligible patients presenting to Massachusetts General Hospital, 218 were eligible to be included in the analysis; of 160 patient datasets from other centres, 123 were included. Using the derivation cohort, we derived provisional criteria for probable CAA requiring the presence of at least two strictly lobar haemorrhagic lesions (ie, intracerebral haemorrhages, cerebral microbleeds, or foci of cortical superficial siderosis) or at least one strictly lobar haemorrhagic lesion and at least one white matter characteristic (ie, severe visible perivascular spaces in centrum semiovale or white matter hyperintensities in a multispot pattern). The sensitivity and specificity of these criteria were 74·8% (95% CI 65·4-82·7) and 84·6% (71·9-93·1) in the derivation cohort, 92·5% (79·6-98·4) and 89·5% (66·9-98·7) in the temporal validation cohort, 80·2% (70·8-87·6) and 81·5% (61·9-93·7) in the geographical validation cohort, and 74·5% (65·4-82·4) and 95·0% (83·1-99·4) in all patients who had autopsy as the diagnostic standard. The area under the receiver operating characteristic curve (AUC) was 0·797 (0·732-0·861) in the derivation cohort, 0·910 (0·828-0·992) in the temporal validation cohort, 0·808 (0·724-0·893) in the geographical validation cohort, and 0·848 (0·794-0·901) in patients who had autopsy as the diagnostic standard. The v2.0 Boston criteria for probable CAA had superior accuracy to the current Boston criteria (sensitivity 64·5% [54·9-73·4]; specificity 95·0% [83·1-99·4]; AUC 0·798 [0·741-0854]; p=0·0005 for comparison of AUC) across all individuals who had autopsy as the diagnostic standard. INTERPRETATION: The Boston criteria v2.0 incorporate emerging MRI markers of CAA to enhance sensitivity without compromising their specificity in our cohorts of patients aged 50 years and older presenting with spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes. Future studies will be needed to determine generalisability of the v.2.0 criteria across the full range of patients and clinical presentations. FUNDING: US National Institutes of Health (R01 AG26484)

    Research Progresses in Understanding the Pathophysiology of Moyamoya Disease

    Get PDF
    Background: The pathogenesis of moyamoya disease (MMD) is still unknown. The detection of inflammatory molecules such as cytokines, chemokines and growth factors in MMD patients' biological fluids supports the hypothesis that an abnormal angiogenesis is implicated in MMD pathogenesis. However, it is unclear whether these anomalies are the consequences of the disease or rather causal factors as well as these mechanisms remain insufficient to explain the pathophysiology of MMD. The presence of a family history in about 9-15% of Asian patients, the highly variable incidence rate between different ethnic and sex groups and the age of onset support the role of genetic factors in MMD pathogenesis. However, although some genetic loci have been associated with MMD, few of them have been replicated in independent series. Recently, RNF213 gene was shown to be strongly associated with MMD occurrence with a founder effect in East Asian patients. However, the mechanisms leading from RNF213 mutations to MMD clinical features are still unknown. Summary: The research on pathogenic mechanism of MMD is in its infancy. MMD is probably a complex and heterogeneous disorder, including different phenotypes and genotypes, in which more than a single factor is implicated. Key Message: Since the diagnosis of MMD is rapidly increasing worldwide, the development of more efficient stratifying risk systems, including both clinical but also biological drivers became imperative to improve our ability of predict prognosis and to develop mechanism-tailored interventions. (C) 2016 S. Karger AG, BaselPeer reviewe

    Thrombosis in Cerebral Aneurysms and the Computational Modeling Thereof: A Review

    Get PDF
    Thrombosis is a condition closely related to cerebral aneurysms and controlled thrombosis is the main purpose of endovascular embolization treatment. The mechanisms governing thrombus initiation and evolution in cerebral aneurysms have not been fully elucidated and this presents challenges for interventional planning. Significant effort has been directed towards developing computational methods aimed at streamlining the interventional planning process for unruptured cerebral aneurysm treatment. Included in these methods are computational models of thrombus development following endovascular device placement. The main challenge with developing computational models for thrombosis in disease cases is that there exists a wide body of literature that addresses various aspects of the clotting process, but it may not be obvious what information is of direct consequence for what modeling purpose (e.g., for understanding the effect of endovascular therapies). The aim of this review is to present the information so it will be of benefit to the community attempting to model cerebral aneurysm thrombosis for interventional planning purposes, in a simplified yet appropriate manner. The paper begins by explaining current understanding of physiological coagulation and highlights the documented distinctions between the physiological process and cerebral aneurysm thrombosis. Clinical observations of thrombosis following endovascular device placement are then presented. This is followed by a section detailing the demands placed on computational models developed for interventional planning. Finally, existing computational models of thrombosis are presented. This last section begins with description and discussion of physiological computational clotting models, as they are of immense value in understanding how to construct a general computational model of clotting. This is then followed by a review of computational models of clotting in cerebral aneurysms, specifically. Even though some progress has been made towards computational predictions of thrombosis following device placement in cerebral aneurysms, many gaps still remain. Answering the key questions will require the combined efforts of the clinical, experimental and computational communities

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    Analysis of 273 ancient horse genomes reveals that modern domestic horses originated in the Western Eurasian steppes, especially the lower Volga-Don region.Domestication of horses fundamentally transformed long-range mobility and warfare(1). However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling(2-4) at Botai, Central Asia around 3500 bc(3). Other longstanding candidate regions for horse domestication, such as Iberia(5) and Anatolia(6), have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association(7) between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc(8,9) driving the spread of Indo-European languages(10). This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture(11,12).Descriptive and Comparative Linguistic

    Déterminants du vasospasme et du déficit ischémique retardé après une hémorragie méningée (étude de l'autorégulation et de l'ADMA)

    No full text
    Le vasospasme (VS) est le mécanisme classique du déficit ischémique retardé (DIR) survenant après une hémorragie méningée. Toutefois, le rôle de l'autorégulation cérébrovasculaire (ARC) et les mécanismes moléculaires de ces phénomènes sont mal connus. Nous avons mesuré chez 15 patients l'ARC par la méthode du coefficient Mx, à J3, J8 et J15 après l'hémorragie méningée. Dans le même temps, les taux d'ADMA, marqueur de dysfonction endothéliale, ont été dosés dans le sérum et le LCR. Neuf patients ont présenté un VS et trois un DIR. L'ARC était altérée précocement puis tendait à se normaliser à J15. Une altération précoce et évolutive de l'ARC associée au VS semblait nécessaire pour l'apparition d'un DIR. Les taux d'ADMA dans le LCR et le sérum des patients augmentaient dans le temps et étaient plus élevés que chez les témoins, mais sans corrélation entre Mx et taux d'ADMA. La production excessive d'ADMA ne semble donc pas expliquer l'altération de l'ARC après une hémorragie méningée.TOULOUSE3-BU Santé-Centrale (315552105) / SudocSudocFranceF
    corecore