1,403 research outputs found

    Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications

    Get PDF
    Energy efficiency is becoming increasingly important for computing systems, in particular for large scale HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy-performance model, and derive a number of energy saving strategies which can be easily adopted on recent high-end HPC systems for generic applications

    Performance and Power Analysis of HPC Workloads on Heterogenous Multi-Node Clusters

    Get PDF
    Performance analysis tools allow application developers to identify and characterize the inefficiencies that cause performance degradation in their codes, allowing for application optimizations. Due to the increasing interest in the High Performance Computing (HPC) community towards energy-efficiency issues, it is of paramount importance to be able to correlate performance and power figures within the same profiling and analysis tools. For this reason, we present a performance and energy-efficiency study aimed at demonstrating how a single tool can be used to collect most of the relevant metrics. In particular, we show how the same analysis techniques can be applicable on different architectures, analyzing the same HPC application on a high-end and a low-power cluster. The former cluster embeds Intel Haswell CPUs and NVIDIA K80 GPUs, while the latter is made up of NVIDIA Jetson TX1 boards, each hosting an Arm Cortex-A57 CPU and an NVIDIA Tegra X1 Maxwell GPU.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] and Horizon 2020 under the Mont-Blanc projects [17], grant agreements n. 288777, 610402 and 671697. E.C. was partially founded by “Contributo 5 per mille assegnato all’Università degli Studi di Ferrara-dichiarazione dei redditi dell’anno 2014”. We thank the University of Ferrara and INFN Ferrara for the access to the COKA Cluster. We warmly thank the BSC tools group, supporting us for the smooth integration and test of our setup within Extrae and Paraver.Peer ReviewedPostprint (published version

    Significant Enhancement of Neutralino Dark Matter Annihilation from Electroweak Bremsstrahlung

    Get PDF
    Indirect searches for the cosmological dark matter have become ever more competitive during the past years. Here, we report the first full calculation of leading electroweak corrections to the annihilation rate of supersymmetric neutralino dark matter. We find that these corrections can be huge, partially due to contributions that have been overlooked so far. Our results imply a significantly enhanced discovery potential of this well motivated dark matter candidate with current and upcoming cosmic ray experiments, in particular for gamma rays and models with somewhat small annihilation rates at tree level.Comment: 7 pages revtex4; 4 figures. Minor changes to match published versio

    Multi-Node Advanced Performance and Power Analysis with Paraver

    Get PDF
    Performance analysis tools allow application developers to identify and characterize the inefficiencies that cause performance degradation in their codes. Due to the increasing interest in the High Performance Computing (HPC) community towards energy-efficiency issues, it is of paramount importance to be able to correlate performance and power figures within the same profiling and analysis tools. For this reason, we present a preliminary performance and energy-efficiency study aimed at demonstrating how a single tool can be used to collect most of the relevant metrics. Moreover we show how the same analysis techniques are applicable on different architectures, analyzing the same HPC application running on two clusters, based respectively on Intel Haswell and Arm Cortex-A57 CPUs.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] and Horizon 2020 under the Mont-Blanc projects, grant agreements n. 288777, 610402 and 671697. E.C. was partially founded by “Contributo 5 per mille assegnato all’Universit`a degli Studi di Ferrara - dichiarazione dei redditi dell’anno 2014”.Peer ReviewedPostprint (author's final draft

    The GeV Excess Shining Through: Background Systematics for the Inner Galaxy Analysis

    Get PDF
    Recently, a spatially extended excess of gamma rays collected by the Fermi-LAT from the inner region of the Milky Way has been detected by different groups and with increasingly sophisticated techniques. Yet, any final conclusion about the morphology and spectral properties of such an extended diffuse emission are subject to a number of potentially critical uncertainties, related to the high density of cosmic rays, gas, magnetic fields and abundance of point sources. We will present a thorough study of the systematic uncertainties related to the modelling of diffuse background and to the propagation of cosmic rays in the inner part of our Galaxy. We will test a large set of models for the Galactic diffuse emission, generated by varying the propagation parameters within extreme conditions. By using those models in the analysis of Fermi-LAT data as Galactic foreground, we will show that the gamma-ray excess survives and we will quantify the uncertainties affecting the excess morphology and energy spectrum.Comment: 2014 Fermi Symposium proceedings - eConf C14102.1 7 pages, 4 figure

    Diffuse gamma-ray emission from galactic pulsars

    Get PDF
    Millisecond Pulsars are second most abundant source population discovered by the Fermi-LAT. They might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT, the IDGRB. Gamma-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. We aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. We model the MSPs spatial distribution in the Galaxy and the gamma-ray emission parameters by considering radio and gamma-ray observational constraints. By simulating a large number of MSPs populations, we compute the average diffuse emission and the anisotropy 1-sigma upper limit. The emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10 degrees in latitude. The 1-sigma upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30 degrees. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude gamma-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes. Nevertheless, given the MSP distribution, we expect them to contribute significantly to the gamma-ray diffuse emission at low latitudes. Since, along the galactic disk, the population of young Pulsars overcomes in number the one of MSPs, we compute the gamma-ray emission from the whole population of unresolved Pulsars in two low-latitude regions: the inner Galaxy and the galactic center.Comment: 19 pages, 26 figures. It matches the published version, minor changes onl

    A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics

    Get PDF
    Several groups have identified an extended excess of gamma rays over the modeled foreground and background emissions towards the Galactic center (GC) based on observations with the Fermi Large Area Telescope. This excess emission is compatible in morphology and spectrum with a telltale sign from dark matter (DM) annihilation. Here, we present a critical reassessment of DM interpretations of the GC signal in light of the foreground and background uncertainties that some of us recently outlaid in Calore et al. 2014. We find that a much larger number of DM models fits the gamma-ray data than previously noted. In particular: (1) In the case of DM annihilation into bˉb\bar{b}b, we find that even large DM masses up to mχm_\chi \simeq 74 GeV are allowed with a pp-value >0.05> 0.05. (2) Surprisingly, annihilation into non-relativistic hh gives a good fit to the data. (3) The inverse Compton emission from μ+μ\mu^+\mu^- with mχm_\chi\sim 60-70 GeV can also account for the excess at higher latitudes, b>2|b|>2^\circ, both in its spectrum and morphology. We also present novel constraints on a large number of mixed annihilation channels, including cascade annihilation involving hidden sector mediators. Finally, we show that the current limits from dwarf spheroidal observations are not in tension with a DM interpretation when uncertainties on the DM halo profile are accounted for.Comment: 18 pages, 9 figures, 4 tables. It matches the published version. Figure 1 correcte

    Criteri per la valutazione della ricerca nelle scienze umane e sociali

    Get PDF
    Si ripercorre la vicenda recente che ha portato alla “proposta” del Consiglio Universitario Nazionale del 25 febbraio 2010 circa i “Criteri identificanti il carattere scientifico delle pubblicazioni” universitarie, in ottemperanza alla L. 1/2009: cd ‘valutazione’, che produrrà modificazioni rilevanti su alcuni aspetti della vita universitaria italiana, come ad esempio la partecipazione dei docenti alle commissioni di valutazione comparativa e la concessione degli scatti retributivi biennali dei docenti. L’analisi storica di tale vicenda, è accompagnata dalla riflessione sulla diversa natura, storicamente determinatasi, tra la valutazione ‘quantitativa’ della ricerca di tipo ‘scientifico’, affidata in preponderanza a criteri bibliometrici quali Impact Factor e indici ISI, e la valutazione ‘qualitativa’ della ricerca di tipo ‘umanistico’, affidata a criteri come quelli di una diversità valutativa delle tipologie dei prodotti (monografie e articoli) e del sistema di peer reviewing
    corecore