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Abstract. Performance analysis tools allow application developers to identify and
characterize the inefficiencies that cause performance degradation in their codes.
Due to the increasing interest in the High Performance Computing (HPC) com-
munity towards energy-efficiency issues, it is of paramount importance to be able
to correlate performance and power figures within the same profiling and analysis
tools. For this reason, we present a preliminary performance and energy-efficiency
study aimed at demonstrating how a single tool can be used to collect most of the
relevant metrics. Moreover we show how the same analysis techniques are applica-
ble on different architectures, analyzing the same HPC application running on two
clusters, based respectively on Intel Haswell and Arm Cortex-A57 CPUs.
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1. Introduction and related works

Performance analysis tools allow application developers to identify and characterize the
inefficiencies that cause performance degradation in their codes. Profiling and analysis
is often the first step towards the optimization of an application. Also, being able to
observe and measure the behavior of parallel applications at scale, or at least in a multi-
node context, can show unexpected pitfalls and insightful information about performance
bottlenecks and/or opportunities for performance and energy-efficiency improvements.

The problem of improving energy efficiency of HPC technology has become in-
creasingly relevant in recent years [1] and it is now listed as one of the hardest challenges
for exa-scale systems, e.g., in the report about top10 systems by the US – DoE [2]. The
HPC community has therefore grown a strong interest towards integrating power and
energy aspects into application analysis, allowing developers to not only optimize their
codes for performance, but also to investigate their energy-efficiency.

Several tools were developed to target this need. Surveys studies like the one of
S. Benedict [3] already provides an overview of the tools available on the market, but we
want to complement it with the flexible and visual approach allowed by the Barcelona
Supercomputing Center (BSC) tools2. The Extrae instrumentation library collects per-
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formance traces of parallel applications with minimal overhead, while Paraver [4], a
postmortem advanced trace visualizer, allows to inspect Extrae traces, enabling several
kind of advanced visual and numerical analysis on the collected metrics. In this work we
aim to show how Extrae and Paraver can be used to perform performance and power/en-
ergy analysis on generic applications, both on architectures where hardware counters are
available [5] and integrated in the PAPI library [6], and also where external sensors and
power meters have to be used. In agreement with the ideas proposed by C. Bekas et al. [7]
we present in our work how to easily access metrics such FLOPS/Watt, but also how to
derive metrics such as energy to solution and energy delay product.

Another promising approach towards efficiency in HPC is the one of the EEHPCWG
of N. Bates [8], trying to push an awareness action at data center level. It is part of this
effort the approach of optimizing the job scheduling using different power-aware policies
presented by D. Tafani et al. [9] or adding hardware/software extensions for improving
energy awareness as presented by W. A. Ahmad et al. [10].

Various attempts to take advantage of mobile technology for increasing energy effi-
ciency of HPC systems have been taken in the recent past. The closest to our work are the
EU Mont-Blanc project [11,12] and the COSA project [13], but several other examples
can be found in the literature [14,15,16,17].

Our work is complementary to all these efforts, as we aim to have an ecosystem of
tools, allowing to analyze performance and power/energy related metrics of large scale
applications while running on both, classical high-end HPC clusters, as well as innovative
and experimental setups. Such tools target the HPC application developers more than the
data-center engineers, rising an “energy awareness” in application experts, and making
easier the comparison of different architectures.

This document is organized as follows: in Section 2 we introduce the problem we
want to tackle, in Section 3 we explain the hardware and software configuration in which
we performed our experiments, in Section 4 we mention the benchmarking application
used then in Section 5 to perform the actual performance and power measurements. Sec-
tion 6 collects our final comments and future research steps.

2. Problem analysis

The sensitivity of High-Performance Computing (HPC) scientific community towards
energy efficiency has grown more and more in the last years. The number of Google
Scholar hits for the key words “HPC energy efficiency” for year 2016 is roughly the same
as for the triennium 2013–2015. This is just a coarse metric that confirms the urgency of
making HPC systems more energy efficient. As we believe that part of this efficiency can
be obtained by fine tuning codes and system configurations, we focus in this work in ad-
dressing the question: How can we make parallel application developers and scientists,
closer to concepts like compute efficiency and power consumption?

As first corollary of this broad question, we address in this work the problem of
studying in a graphical manner both performance and power figures on different cluster
configurations, based on the most relevant modern architectures, such as Intel and Arm.

As a second corollary of the general question, while is relatively easy to have over-
all figures of performance and power (e.g., total number of floating point operation ex-
ecuted, total execution time, average power consumption, etc.), being able to analyze
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portions of the execution on multi-node cluster is not trivial. We believe that this last
approach is relevant, since knowing and overcoming performance inefficiency at micro-
scopic level can lead to performance improvements and/or power optimizations. As an
example, the identification of memory-bound phases, or in general phases in which not
all the computational resources could be exploited, would allow to estimate the effec-
tiveness of techniques such as using Dynamic Voltage and Frequency Scaling (DVFS) to
lower the processor frequency to save energy.

3. Proposed methodology

To address the first corollary presented in Sec. 2, we consider in this work two HPC
clusters based on different architectures. An high-end HPC cluster based on Intel CPUs
and NVIDIA GPUs and a low-power cluster, made of NVIDIA Jetson TX boards.

The High-end HPC cluster 3 comprises 5 computing nodes, where every node embeds
2× Intel Xeon E5-2630v3 CPUs and 8× NVIDIA K80 dual-GPU boards. Each board
contains 2× GK210 GPUs, accounting for 16 CUDA devices per node. This cluster
is named Computing On Kepler Architecture (COKA) and it is managed by INFN &
University of Ferrara (Italy).

The Embedded cluster 4 composes 15 nodes, each of them housing a NVIDIA
Tegra X15 SoC, embedding a Quad Arm Cortex-A57, with 2 MB of L2 cache and 4 GB
LPDDR4, supported by a 16 GB eMMC storage device and accelerated with an em-
bedded GPU NVIDIA Maxwell, 256 CUDA cores. Node interconnection is performed
using a single Gigabit Ethernet link per node. The cluster is installed at the Barcelona
Supercomputing Center (Spain) and we refer to it as Jetson cluster in the rest of the text.

In this first work we just analyze applications running on the CPUs of these systems,
and thus CPU related metrics, but GPUs could also be taken into account and we do not
see technical limitations in following the same approach also on those architectures. For
power measurements we rely on RAPL energy counters, accessed via PAPI library [18],
for the COKA cluster and on an embedded power meter for the nodes of the Jetson
Cluster.

To address the second corollary of our problem, we selected the performance instru-
mentation tool, Extrae, and the visual performance analyzer, Paraver [4]. Extrae is a tool
which uses different interposition mechanisms to inject probes into a generic target appli-
cation in order to collect performance metrics. This tool make extensive use of the PAPI
interface to collect information regarding the microprocessor performance, allowing to
capture such information when parallel programming calls happen, but also at the entry
and exit points of instrumented user routines. Extrae is the package devoted to generate
Paraver trace-files. Paraver, on the other side, is a visualization tool allowing to have a
qualitative global perception of the behavior of an application previously run acquiring
Extrae traces.

3http://coka.unife.it
4https://wiki.hca.bsc.es/dokuwiki/wiki:prototype
5http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
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4. Benchmarking Application

As a benchmarking application, representative of a wider class of lattice based HPC
applications, we adopt a Lattice Boltzmann simulation which has been highly optimized
for several architectures.

Lattice Boltzmann methods (LB) are widely used in computational fluid dynamics,
to describe flows in two and three dimensions. LB methods [19] – discrete in position
and momentum spaces – are based on the synthetic dynamics of populations sitting at
the sites of a discrete lattice. At each time step, populations propagate from lattice-site
to lattice-site and then incoming populations collide among one another, that is, they
mix and their values change accordingly. LB models in n dimensions with p populations
are labeled as DnQp and in this work we consider a state-of-the-art D2Q37 model that
correctly reproduces the thermo-hydrodynamical evolution of a fluid in two dimensions,
and enforces the equation of state of a perfect gas (p = ρT ) [20,21]; this model has been
extensively used for large scale simulations of convective turbulence (e.g., [22,23]).

A Lattice Boltzmann simulation starts with an initial assignment of the populations
and then iterates for each point in the domain, and for as many time-steps as needed, two
critical kernel functions. The first kernel, called propagate, moves populations across
lattice sites according to an appropriate stencil depending on the LB model used. It per-
forms only a large number of sparse memory accesses, and for this reason is strongly
memory-bound. The latter, called collide, uses as input the populations gathered by the
propagate kernel, and performs all the mathematical steps associated to the computation
of the new population values. This function is strongly compute-bound making heavy use
of the floating-point units of the processor. These two kernels take most of the execution
time of any LB simulation.

In the last years several implementations of this model were developed, which were
used both for convective turbulence studies [22,23], as well as a benchmarking appli-
cation for programming models and HPC hardware architectures [24,25,26,27]. In this
work we utilize two different implementations – of the same model – targeting the two
different CPU architectures embedded respectively in the high-end and the embedded
clusters. Consequently, one developed for Intel CPUs [28] and the other, derived from
the former, initially ported to Armv7 architecture [29] and recently also to Armv8.

To fully exploit the high level of parallelism made available by the LB model, both
implementations exploits MPI (Message Passing Interface) to divide computations across
several processes and OpenMP to further divide them across threads. Moreover, to ex-
ploit CPU vector units, they both use, respectively, AVX2 and NEON intrinsics.

In particular, for all the tests presented in this work, we simulate a 2-dimensional
fluid described by a lattice of 6144×8192 sites. Each of the Np MPI processes handle a
partition of the lattice of size 6144/Np ×8192 and further divides it across Nt OpenMP
threads, which therefore on their turn will handle a sub-lattice of size 6144/Np

Nt
× 8192.

Each MPI process is bind to a CPU and each OpenMP thread to a core. From the physical
simulation point of view, MPI processes are logically arranged in a ring, thus simulating
a 2-dimensional fluid shaped as the surface of a cylinder. Consequently, data exchange
happens only between neighboring processes.

As already mentioned, the sub-lattice handled by each process is further divided
along the x-dimension across the spawned Nt OpenMP threads. The two threads taking
care of the leftmost and rightmost part of the sub-lattice (i.e., the first and the last) for
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each process, initiate the MPI communications with the left and right neighbors. More-
over, relieving these two threads from part of the propagate computation duties, while
performing MPI transfers, allow to overlap MPI communications with computations.

5. Application analysis with Extrae and Paraver

On the high-end HPC cluster, COKA, the use of SLURM Energy Accounting Plugin6

already allowed to gather overall energy figures for the jobs scheduled on the cluster and
custom tools were already developed to instrument generic codes on this system [30].
Despite of this, these tools did not allow to easily correlate these figures with other per-
formance metrics and/or required the manual instrumentation of applications. Then, we
installed Extrae v3.5.0rc4 instrumentation tool and recompiled it with support for Open-
MPI 1.10.6, in order to allow Extrae to add its probes whenever an MPI call is invoked
or OpenMP regions are encountered, by a generic application.

On the embedded cluster, Jetson, we developed a set of prolog and epilog scripts
that start/stop a power monitor daemon running with minimum overhead (measured be-
low 2%) on one of the core. The daemon simply configure, read and write registers via
I2C protocol into the Texas Instruments INA3221 device7. The device is configured for
monitoring three channels: i) the power drain of the CPU cores, ii) the power drain of the
embedded GPU, and iii) the overall power drain of the Jetson compute module, including
memories, but excluding the I/O devices on the carrier board of the development kit. It
is important to note that the final result of this configuration mimics the behavior of the
SLURM Energy Accounting plugin, but also generates a Paraver trace with the power
data gathered while the job was running. Also, with the due changes in the backend han-
dling the power measurements, the same SLURM infrastructure has been extended in
order to support other Arm based mini-clusters8 installed at BSC.

5.1. Metrics visualization and analysis with Paraver

After gathering performance and power traces on both clusters, using Extrae, we have
been able to plot them and navigate them in the Paraver visualizer.

Figure 1 shows the instantaneous power consumption of one execution of ten itera-
tions of the LB application introduced in Sec. 4: on the top the power drain derived from
the RAPL energy counters on COKA, while on the bottom the power drain as measured
by the INA3221 device on Jetson. As on the COKA cluster we run on a single dual socket
node, we see a timeline with two color-coded measurements: one for socket 1 and the
other for socket 2. We see values exceeding the 85W TDP of these CPUs since we are
summing CPU and DRAM power drain. On the Jetson cluster we run on 12 nodes, so we
can see twelve color-coded lines, encoding the power consumption of each of the nodes.

For both the architectures we clearly see an initial phase of initialization on the left,
the ten iterations with visible different power drains for the alternating propagate and
collide functions, and eventually on the right the final results check phase.

6https://slurm.schedmd.com/acct_gather_energy_plugins.html
7http://www.ti.com/product/INA3221
8https://wiki.hca.bsc.es/dokuwiki/wiki:prototype:power_monitor
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Figure 1. Color-coded timelines of the power drain (in Watts) on one node with two sockets of the COKA
cluster (top) and 12 nodes of the Jeston cluster (bottom).

Figure 2. Timeline of the efficiency (GFLOPS/W) of the Jetson cluster.

The flexibility of the Paraver analyzer allow us to combine performance and power
figures. As an example of this, we show in Figure 2 the timeline of power efficiency, i.e.,
GFLOPS/W, of the parallel region within the same run as before, for the Jetson cluster.
This figure has been obtained simply plotting the timeline of the PAPI event accounting
for SIMD operations and dividing it by the power timeline of Figure 1. Another feature

Figure 3. Histogram of the percentage of execution time spent in each interval of efficiencies

of the Paraver tool is the possibility to generate histograms: in Figure 3 we can see the
histogram of the power efficiency. On the x-axis we have bins of power efficiencies (in
GFLOPS/W), while on the y-axes we show each of the twelve nodes. The light green
color translate to a low percentage of execution time spent at that efficiency, while a
dark blue translate to an high percentage of execution time spent in the given range of
efficiency. We can clearly see two tendencies: one around 0.1 GFLOPS/W, corresponding
to the propagate phase of the code (which is a memory-bound phase), and one around
1.3 GFLOPS/W, corresponding to the collide. As a comparison, on the COKA cluster
the collide reach ∼ 1.1 GFLOP/W.
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Table 1. Time to solution (TS), average power drain, Energy to solution (ES) and Energy Delay Product EDP,
of the LB application run respectively on 12 nodes of the Jetson cluster and on one node of COKA. We are
here ignoring the power drain given by motherboards, power supply inefficiencies, network devices, cooling,
etc.

TS [s/iter] Pavg [W] ES [J/iter] EDP [J · s/iter]

12× Jetson Nodes 4.70 89.92 417.41 1961.83
1× COKA Node 2.13 206.78 439.97 937.14

As mentioned by Curioni et al. in [7], metrics like GFLOPS/W, even if relevant for
worldwide ranking like Green500, are not a sufficient indicators of global efficiency of
a complex HPC application running on a large HPC cluster. For this reason we show in
Tab. 1 that also the energy to solution and energy delay product can be computed taking
advantage of the Paraver analyzer, highlighting the interesting possibility to compare dif-
ferent architectures. In particular, as a preliminary result, we can appreciate from Tab. 1
that 12 Jetson nodes are equivalent to a COKA node from the Energy to solution point of
view, although the former are a factor of 2 less power hungry, while the latter is a factor
of 2 faster.

Apart from visualizing and analyzing instantaneous and global metrics, Paraver
could be used also to visually correlate changes in power related metrics and the different
application phases.

Figure 4. Two iterations of the LB simulation on one COKA node. In the upper part, using a color-code
spanning between 70 and 110 Watt, we see the power drain of the two CPUs (plus DRAMs contribution), while
in the bottom part, in solid blue, we see the corresponding OpenMP threads executing in the respective CPU
cores.

As an example, in Figure 4 we show just 2 iterations of the LB simulation, where
we plot the power drain of the two CPUs plus DRAMs contribution (using a color-code
spanning between 70 and 110 Watt), on top of a view of the 16 OpenMP threads exe-
cuting. This view gives a good perception of where the major computational phases are,
and their balance across cores. Looking at the bottom plot, we can spot a non negligible
amount of time (white parts) of about 150ms, where most of the threads are waiting (for
synchronizations or communications). Interestingly, in correlation with these phases, we
can see in the upper plot a lower power drain (green areas correspond to ∼ 70 Watt). We
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can also appreciate the fact that during the propagate phase the average power drain is
∼ 97 Watt, while during collide is ∼ 107 Watt.

In Figure 5 we show a similar case, but in the Jetson cluster: on the left we can see
the Instruction Per Clock cycle, IPC, of one iteration and on the right the corresponding
power drain.

Figure 5. Timeline of one iteration of the LB code. On the left we show the Instruction per Clock cycle (IPC),
low IPC corresponds to the propagate phase, i.e., the memory-bound phase. On the right the power drain during
the same iteration. It is important to note that during the memory bound phase the power consumption is lower
(light green) than during the compute bound phase (dark blue).

For both cases, we want to highlight here that an easy visual inspection can highlight
portion of the code where optimizations could be applied. All these are useful hints, not
only for possible performance optimizations, but also from the energy-efficiency point
of view. In [26] we show in fact that a careful selection of the CPU frequency can reduce
the overall energy consumption of the same code by ∼ 10% on the CPUs of the COKA
cluster.

5.2. Limitations

We know the presented methodology still have some limitations such as: i) we can not
be sure about the fact that power metrics derived by RAPL counters on Intel CPUs can
be directly compared with the ones acquired on Jetson boards; ii) All the power figures
presented in this work only take into account CPU and memory, so they do not include
power for network, storage and other passive/active components in the cluster, nor the
cooling; iii) synchronization of power and performance traces in the Jetson setup has still
to be tuned. This can imply some variability, that can induce limitations when investigat-
ing very small time windows. Thus Tab. 1 in particular should be interpreted in view of
these caveats.
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6. Conclusions and future work

As further applications of this methodology, we plan to use Paraver to spot code regions
where computing resources are underutilized to apply energy-efficiency optimizations.
Knowing the overhead for changing CPU frequency with DVFS, we can consider to iso-
late the cases where lowering the frequency can result in an overall benefit in the en-
ergy to solution. Moreover, we plan to combine our analysis with compilation techniques
such as the one presented in [31]. Eventually, as both the platforms considered for this
preliminary study includes GPUs, we plan to extend our study including also GPUs.
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