111 research outputs found

    Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state

    Get PDF
    A mixing model derived from first principles describes the bulk density ( BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD = 1 / [LOI/k(1) + (1-LOI) / k(2)], where k(1) and k(2) are the self-packing densities of the pure organic and inorganic components, respectively. The model explained 78 % of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k(1) and k(2) were estimated to be 0.085 + / - 0.0007 g cm(-3) and 1.99 + / - 0.028 g cm(-3), respectively. Based on the fitted organic density (k(1)) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is \u3c = 0.3 cm yr (-1). Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea-level rise in the absence of a significant source of mineral sediment. Application of k(2) to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr(-1). Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr(-1) under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root: shoot ratio, suspended sediment concentration, sediment-capture efficiency, and episodic events

    Electron-Transport in Calcium-Based Metallic Glasses

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org

    Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state

    Get PDF
    A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD = 1/[LOI/k1 + (1-LOI)/k2], where k1 and k2 are the self-packing densities of the pure organic and inorganic components, respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k1 and k2 were estimated to be 0.085 ± 0.0007 g cmβˆ’3 and 1.99 ± 0.028 g cmβˆ’3, respectively. Based on the fitted organic density (k1) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is ≀ 0.3 cm yrβˆ’1. Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea-level rise in the absence of a significant source of mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yrβˆ’1. Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yrβˆ’1 under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root:shoot ratio, suspended sediment concentration, sediment-capture efficiency, and episodic events

    Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    Get PDF
    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

    Can We Modify the Intrauterine Environment to Halt the Intergenerational Cycle of Obesity?

    Get PDF
    Child obesity is a global epidemic whose development is rooted in complex and multi-factorial interactions. Once established, obesity is difficult to reverse and epidemiological, animal model, and experimental studies have provided strong evidence implicating the intrauterine environment in downstream obesity. This review focuses on the interplay between maternal obesity, gestational weight gain and lifestyle behaviours, which may act independently or in combination, to perpetuate the intergenerational cycle of obesity. The gestational period, is a crucial time of growth, development and physiological change in mother and child. This provides a window of opportunity for intervention via maternal nutrition and/or physical activity that may induce beneficial physiological alternations in the fetus that are mediated through favourable adaptations to in utero environmental stimuli. Evidence in the emerging field of epigenetics suggests that chronic, sub-clinical perturbations during pregnancy may affect fetal phenotype and long-term human data from ongoing randomized controlled trials will further aid in establishing the science behind ones predisposition to positive energy balance

    Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States

    Get PDF
    Β© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 9478, doi:10.1038/s41598-018-26948-7.Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C mβˆ’3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.Synthesis efforts were funded by NASA Carbon Monitoring System (CMS; NNH14AY67I), USGS LandCarbon and the Smithsonian Institution. J.R.H. was additionally supported by the NSF-funded Coastal Carbon Research Coordination Network while completing this manuscript (DEB-1655622). J.M.S. coring efforts were funded by NSF (EAR-1204079). B.P.H. coring efforts were funded by Earth Observatory (Publication Number 197)
    • …
    corecore