1,972 research outputs found

    Affine invariant conditions for the topological distinction of quadratic systems with a critical point of the 4th multiplicity

    Get PDF
    The affine invariant partition of the set of quadratic systems with one finite singular point of the 4th multiplicity with respect to different topological classes is accomplished. The conditions corresponding to this partition are semi-algebraic, i.e. they are expressed as equalities or inequalities between polynomials

    The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach

    Get PDF
    This work presents a detailed investigation into the effect of a low Cu addition (0.01 at.%) on precipitation in an Al-0.80Mg-0.85Si alloy during ageing. The precipitate crystal structures were assessed by scanning transmission electron microscopy combined with a novel scanning precession electron diffraction approach, which includes machine learning. The combination of techniques enabled evaluation of the atomic arrangement within individual precipitates, as well as an improved estimate of precipitate phase fractions at each ageing condition, through analysis of a statistically significant number of precipitates. Based on the obtained results, the total amount of solute atoms locked inside precipitates could be approximated. It was shown that even with a Cu content close to impurity levels, the Al-Mg-Si system precipitation was significantly affected with overageing. The principal change was due to a gradually increasing phase fraction of the Cu-containing Q'-phase, which eventually was seen to dominate the precipitate structures. The structural overtake could be explained based on a continuous formation of the thermally stable Q'-phase, with Cu atomic columns incorporating less Cu than what could potentially be accommodated.Comment: 13 pages, 10 figures, 2 table

    Facultative methanotrophs are abundant at terrestrial natural gas seeps

    Get PDF
    Background: Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. Results: Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. Conclusion: New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons

    Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Get PDF
    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS
    corecore