5,129 research outputs found
Improving Performance of Iterative Methods by Lossy Checkponting
Iterative methods are commonly used approaches to solve large, sparse linear
systems, which are fundamental operations for many modern scientific
simulations. When the large-scale iterative methods are running with a large
number of ranks in parallel, they have to checkpoint the dynamic variables
periodically in case of unavoidable fail-stop errors, requiring fast I/O
systems and large storage space. To this end, significantly reducing the
checkpointing overhead is critical to improving the overall performance of
iterative methods. Our contribution is fourfold. (1) We propose a novel lossy
checkpointing scheme that can significantly improve the checkpointing
performance of iterative methods by leveraging lossy compressors. (2) We
formulate a lossy checkpointing performance model and derive theoretically an
upper bound for the extra number of iterations caused by the distortion of data
in lossy checkpoints, in order to guarantee the performance improvement under
the lossy checkpointing scheme. (3) We analyze the impact of lossy
checkpointing (i.e., extra number of iterations caused by lossy checkpointing
files) for multiple types of iterative methods. (4)We evaluate the lossy
checkpointing scheme with optimal checkpointing intervals on a high-performance
computing environment with 2,048 cores, using a well-known scientific
computation package PETSc and a state-of-the-art checkpoint/restart toolkit.
Experiments show that our optimized lossy checkpointing scheme can
significantly reduce the fault tolerance overhead for iterative methods by
23%~70% compared with traditional checkpointing and 20%~58% compared with
lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1
Recommended from our members
Primary care physician practices in the diagnosis, treatment and management of men with chronic prostatitis/chronic pelvic pain syndrome.
To describe practice patterns of primary care physicians (PCPs) for the diagnosis, treatment and management of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), we surveyed 556 PCPs in Boston, Chicago, and Los Angeles (RR=52%). Only 62% reported ever seeing a patient like the one described in the vignette. In all, 16% were 'not at all' familiar with CP/CPPS, and 48% were 'not at all' familiar with the National Institutes of Health classification scheme. PCPs reported practice patterns regarding CP/CPPS, which are not supported by evidence. Although studies suggest that CP/CPPS is common, many PCPs reported little or no familiarity, important knowledge deficits and limited experience in managing men with this syndrome
'Mindless markers of the nation': The routine flagging of nationhood across the visual environment
The visual environment has increasingly been used as a lens with which to understand wider processes of social and economic change with studies employing in-depth qualitative approaches to focus on, for example, gentrification or trans-national networks. This exploratory paper offers an alternative perspective by using a novel method, quantitative photo mapping, to examine the extent to which a particular socio-cultural marker, the nation, is ‘flagged’ across three contrasting sites in Britain. As a multi-national state with an increasingly diverse population, Britain offers a particularly fruitful case study, drawing in debates around devolution, European integration and Commonwealth migration. In contributing to wider debates around banal nationalism, the paper notes the extent to which nations are increasingly articulated through commerce, consumption and market exchange and the overall significance of everyday markers (signs, objects, infrastructure) in naturalising a national view of the world
Reduced executive and default network functional connectivity in cigarette smokers
Altered functional connectivity has been associated with acute and chronic nicotine use. Connectivity alterations, specifically in the right and left executive control networks (RECN/LECN) and the default mode network (DMN), may contribute to the addiction cycle. The objective of this study was to determine if executive control network (ECN) and DMN connectivity is different between non‐smokers and smokers and whether reductions in connectivity are related to chronic cigarette use. The RECN, LECN, and DMN were identified in resting state functional magnetic resonance imaging data in 650 subjects. Analyses tested for group differences in network connectivity strength, controlling for age and alcohol use. There was a significant group effect on LECN and DMN connectivity strength with smokers (n = 452) having lower network strengths than non‐smokers (n = 198). Smokers had lower connectivity than non‐smokers associated with key network hubs: the dorsolateral prefrontal cortex, and parietal nodes within ECNs. Further, ECN connectivity strength was negatively associated with pack years of cigarette use. Our data suggest that chronic nicotine use negatively impacts functional connectivity within control networks that may contribute to the difficulty smokers have in quitting. Hum Brain Mapp 36:872–882, 2015. © 2014 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110754/1/hbm22672.pd
Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter
Everyday cosmopolitanism in representations of Europe among young Romanians in Britain
The paper presents an analysis of everyday cosmopolitanism in constructions of Europe among young Romanian nationals living in Britain. Adopting a social representations approach, cosmopolitanism is understood as a cultural symbolic resource that is part of everyday knowledge. Through a discursively-oriented analysis of focus group data, we explore the ways in which notions of cosmopolitanism intersect with images of Europeanness in the accounts of participants. We show that, for our participants, representations of Europe are anchored in an Orientalist schema of West-vs.-East, whereby the West is seen as epitomising European values of modernity and progress, while the East is seen as backward and traditional. Our findings further show that representations of cosmopolitanism reinforce this East/West dichotomy, within a discourse of ‘Occidental cosmopolitanism’. The paper concludes with a critical discussion of the diverse and complex ideological foundations of these constructions of European cosmopolitanism and their implications
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
Photosynthetic antenna complexes capture and concentrate solar radiation by
transferring the excitation to the reaction center which stores energy from the
photon in chemical bonds. This process occurs with near-perfect quantum
efficiency. Recent experiments at cryogenic temperatures have revealed that
coherent energy transfer - a wavelike transfer mechanism - occurs in many
photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson
antenna complex (FMO) as a model system, theoretical studies incorporating both
incoherent and coherent transfer as well as thermal dephasing predict that
environmentally assisted quantum transfer efficiency peaks near physiological
temperature; these studies further show that this process is equivalent to a
quantum random walk algorithm (5-8). This theory requires long-lived quantum
coherence at room temperature, which never has been observed in FMO. Here we
present the first evidence that quantum coherence survives in FMO at
physiological temperature for at least 300 fs, long enough to perform a
rudimentary quantum computational operation. This data proves that the
wave-like energy transfer process discovered at 77 K is directly relevant to
biological function. Microscopically, we attribute this long coherence lifetime
to correlated motions within the protein matrix encapsulating the chromophores,
and we find that the degree of protection afforded by the protein appears
constant between 77 K and 277 K. The protein shapes the energy landscape and
mediates an efficient energy transfer despite thermal fluctuations. The
persistence of quantum coherence in a dynamic, disordered system under these
conditions suggests a new biomimetic strategy for designing dedicated quantum
computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file
The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona\u2019s Meteor Crater
The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona\u2019s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm 12type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results
- …
