238 research outputs found

    Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury

    Get PDF
    AbstractWarm and cold hepatic ischemia followed by reperfusion leads to necrotic cell death (oncosis), which often occurs within minutes of reperfusion. Recent studies also suggest a large component of apoptosis after ischemia/reperfusion. Here, we review the mechanisms underlying adenosine triphosphate depletion—dependent oncotic necrosis and caspase-dependent apoptosis, with emphasis on shared features and pathways. Although apoptosis causes internucleosomal DNA degradation that can be detected by terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling and related assays, DNA degradation also occurs after oncotic necrosis and leads to pervasive terminal deoxynucleotidyl transferase—mediated deoxyuridine triphosphate nick-end labeling staining far in excess of that for apoptosis. Similarly, although apoptosis can occur in a physiological setting without inflammation, in pathophysiological settings apoptosis frequently induces inflammation because of the onset of secondary necrosis and stimulation of cytokine and chemokine formation. In liver, the mitochondrial permeability transition represents a shared pathway that leads to both oncotic necrosis and apoptosis. When the mitochondrial permeability transition causes severe adenosine triphosphate depletion, plasma membrane failure and necrosis ensue. If adenosine triphosphate is preserved, at least in part, cytochrome c release after the mitochondrial permeability transition activates caspase-dependent apoptosis. Mitochondrial permeability transition-dependent cell death illustrates the concept of necrapoptosis, whereby common pathways lead to both necrosis and apoptosis. In conclusion, oncotic necrosis and apoptosis can share features and mechanisms, which sometimes makes discrimination between the 2 forms of cell death difficult. However, elucidation of critical cell death pathways under clinically relevant conditions will show potentially important therapeutic intervention strategies in hepatic ischemia/reperfusion injury

    Paternal Care in Biparental Rodents: Intra- and Inter-individual Variation

    Full text link
    Parental care by fathers, although rare among mmmals, can be essential for the survival and normal development of offspring in biparental species. A growing body of research on biparental rodents has identified several developmental and experiential influences on paternal responsiveness. Some of these factors, such as pubertal maturation, interactions with pups, and cues from a pregnant mate, contribute to pronounced changes in paternal responsiveness across the course of the lifetime in individual males. Others, particularly intrauterine position during gestation and parental care received during postnatal development, can have long-term effects on paternal behavior and contribute to stable differences among individuals within a species. Focusing on five well-studied, biparental rodent species, we review the developmental and experiential factors that have been shown to influence paternal responsiveness, and consider their roles in generating both intra- and inter-individual variation. We also review hormones and neuropeptides that have been shown to modulate paternal care and discuss their potential contributions to behavioral differences within and between males. Finally, we discuss the possibility that vasopressinergic and possibly oxytocinergic signaling within the brain, modulated by gonadal steroid hormones, may represent the "final common pathway" mediating effects of developmental and experiential variables on intra- and inter-individual variation in paternal care

    Addressing the Donor Liver Shortage with EX VIVO

    Full text link
    • …
    corecore