13,745 research outputs found
Compactness for Holomorphic Supercurves
We study the compactness problem for moduli spaces of holomorphic supercurves
which, being motivated by supergeometry, are perturbed such as to allow for
transversality. We give an explicit construction of limiting objects for
sequences of holomorphic supercurves and prove that, in important cases, every
such sequence has a convergent subsequence provided that a suitable extension
of the classical energy is uniformly bounded. This is a version of Gromov
compactness. Finally, we introduce a topology on the moduli spaces enlarged by
the limiting objects which makes these spaces compact and metrisable.Comment: 38 page
Simplified Metrics Calculation for Soft Bit Detection in DVB-T2
The constellation rotation and cyclic quadrature component delay (RQD) technique has been adopted in the second generation terrestrial digital video broadcasting (DVB-T2) standard. It improves the system performance under severe propagation conditions, but introduces serious complexity problems in the hardware implementation of the detection process. In this paper, we present a simplified scheme that greatly reduces the complexity of the demapper by simplifying the soft bit metrics computation having a negligible overall system performance loss
A submillimeter search for pre- and proto-brown dwarfs in Chamaeleon II
Context. Chamaeleon II molecular cloud is an active star forming region that
offers an excellent opportunity for studying the formation of brown dwarfs in
the southern hemisphere. Aims. Our aims are to identify a population of pre-
and proto- brown dwarfs (5 sigma mass limit threshold of ~0.015 Msun) and
provide information on the formation mechanisms of substellar objects. Methods.
We performed high sensitivity observations at 870 microns using the LABOCA
bolometer at the APEX telescope towards an active star forming region in
Chamaeleon II. The data are complemented with an extensive multiwavelength
catalogue of sources from the optical to the far-infrared to study the nature
of the LABOCA detections. Results. We detect fifteen cores at 870 microns, and
eleven of them show masses in the substellar regime. The most intense objects
in the surveyed field correspond to the submillimeter counterparts of the well
known young stellar objects DK Cha and IRAS 12500-7658. We identify a possible
proto-brown dwarf candidate (ChaII-APEX-L) with IRAC emission at 3.6 and 4.5
microns. Conclusions. Our analysis indicates that most of the spatially
resolved cores are transient, and that the point-like starless cores in the
sub-stellar regime (with masses between 0.016 Msun and 0.066 Msun) could be
pre-brown dwarfs cores gravitationally unstable if they have radii smaller than
220 AU to 907 AU (1.2" to 5" at 178 pc) respectively for different masses. ALMA
observations will be the key to reveal the energetic state of these pre-brown
dwarfs candidates.Comment: 11 pages, 6 figure
The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies
Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti
Chocolate, Air Pollution and Children's Neuroprotection: What Cognition Tools should be at Hand to Evaluate Interventions?
Indexación: Web of ScienceMillions of children across the world are exposed to multiple sources of indoor and outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5) and ozone (O-3). The established link between exposure to PM2.5, brain structural, volumetric and metabolic changes, severe cognitive deficits (1.5-2 SD from average IQ) in APOE 4 heterozygous females with >75 - <94% BMI percentiles, and the presence of Alzheimer's disease (AD) hallmarks in urban children and young adults necessitates exploration of ways to protect these individuals from the deleterious neural effects of pollution exposure. Emerging research suggests that cocoa interventions may be a viable option for neuroprotection, with evidence suggesting that early cocoa interventions could limit the risk of cognitive and developmental concerns including: endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain effects. Currently, however, it is not clear how early we should implement consumption of cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable instruments for evaluating cognitive responses to these interventions in clinically healthy children, teens, and young adults. An approach to guide the selection of cognitive tools should take into account neuropsychological markers of cognitive declines in patients with Alzheimer's neuropathology, the distinct patterns of memory impairment between early and late onset AD, and the key literature associating white matter integrity and poor memory binding performance in cases of asymptomatic familial AD. We highlight potential systemic and neural benefits of cocoa consumption. We also highlight Working Memory Capacity (WMC) and attention control tasks as opened avenues for exploration in the air pollution scenario. Exposures to air pollutants during brain development have serious brain consequences in the short and long term and reliable cognition tools should be at hand to evaluate interventions.http://journal.frontiersin.org/article/10.3389/fphar.2016.00232/ful
Panchromatic observations and modeling of the HV Tau C edge-on disk
We present new high spatial resolution (<~ 0.1") 1-5 micron adaptive optics
images, interferometric 1.3 mm continuum and 12CO 2-1 maps, and 350 micron, 2.8
and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images
reveal an unusually slow orbital motion within the tight HV Tau AB pair that
suggests a highly eccentric orbit and/or a large deprojected physical
separation. Scattered light images of the HV Tau C edge-on protoplanetary disk
suggest that the anisotropy of the dust scattering phase function is almost
independent of wavelength from 0.8 to 5 micron, whereas the dust opacity
decreases significantly over the same range. The images further reveal a marked
lateral asymmetry in the disk that does not vary over a timescale of 2 years.
We further detect a radial velocity gradient in the disk in our 12CO map that
lies along the same position angle as the elongation of the continuum emission,
which is consistent with Keplerian rotation around an 0.5-1 Msun central star,
suggesting that it could be the most massive component in the triple system. We
use a powerful radiative transfer model to compute synthetic disk observations
and use a Bayesian inference method to extract constraints on the disk
properties. Each individual image, as well as the spectral energy distribution,
of HV Tau C can be well reproduced by our models with fully mixed dust provided
grain growth has already produced larger-than-interstellar dust grains.
However, no single model can satisfactorily simultaneously account for all
observations. We suggest that future attempts to model this source include more
complex dust properties and possibly vertical stratification. (Abridged)Comment: 26 pages, 11 figures, editorially accepted for publication in Ap
- …
