44 research outputs found

    Higgs boson decay into four leptons at NLOPS electroweak accuracy

    Get PDF
    In view of precision studies of the Higgs sector at the Run II of the LHC, the improvement of the accuracy of the theoretical prediction is becoming a pressing issue. In this framework, we detail a calculation of the full Next-to-Leading Order (NLO) electroweak corrections to Higgs boson decay into four charged leptons, by considering the gold-plated channel H -> Z(*) Z(*) -> 2l 2l', l,l' = e, mu. We match the NLO corrections with a QED Parton Shower (PS), in order to simulate exclusive multiple photon emission and provide novel results at NLOPS electroweak accuracy. We compare our NLO predictions to those of the program Prophecy4f and present NLOPS phenomenological results relevant for Higgs physics studies, with particular attention to precision measurements of the Higgs boson mass, spin-parity assignment and tests of the Standard Model. Our calculation is implemented in a new code, Hto4l, which can be easily interfaced to any generator describing Higgs boson production. As an example, we provide illustrative results for Higgs production and decay in the process gg -> H -> 4l using POWHEG with NLOPS accuracy in the production mode.Comment: 27 pages, 2 tables, 9 figures. New numerical results and plots for dressed leptons. Conclusions unchanged. Version to appear in JHE

    Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders

    Get PDF
    We present a detailed study of the production of a high transverse-momentum lepton pair at hadron colliders, which includes the exact O(alpha) electroweak corrections properly matched with leading logarithmic effects due to multiple photon emission, as required by the experiments at the Fermilab Tevatron and the CERN LHC. Numerical results for the relevant observables of single Z-boson production at hadron colliders are presented. The impact of the radiative corrections is discussed in detail. The presence in the proton of a photon density is considered and the effects of the photon-induced partonic subprocesses are analyzed. The calculation has been implemented in the new version of the event generator HORACE, which is available for precision simulations of the neutral and charged current Drell-Yan processes.Comment: October 2007, 22p

    Electroweak corrections to e+eγγe^+e^-\to\gamma\gamma as a luminosity process at FCC-ee

    Full text link
    We consider large-angle two photon production in e+ee^+ e^- annihilation as a possible process to monitor the luminosity of a future e+ee^+ e^- circular collider (FCC-ee). We review and assess the status of the theoretical accuracy by performing a detailed phenomenological study of next-to-leading order electroweak corrections and leading logarithmic QED contributions due to multiple photon radiation. We also estimate the impact of photonic and fermion-loop corrections at next-to-next-to-leading order and the uncertainty induced by the hadronic contribution to the vacuum polarization. Possible perspectives to address the target theoretical accuracy are briefly discussed.Comment: 13 pages, 3 figures, 3 tables. Extended version, with theoretical details and further numerical results, of the contribution to the workshop proceedings arXiv:1905.05078 by the same authors. v2: minor text modification, one reference adde

    Muon-electron scattering at NLO

    Get PDF
    We consider the process of muon-electron elastic scattering, which has been proposed as an ideal framework to measure the running of the electromagnetic coupling constant at space-like momenta and determine the leading-order hadronic contribution to the muon g2g-2 (MUonE experiment). We compute the next-to-leading (NLO) contributions due to QED and purely weak corrections and implement them into a fully differential Monte Carlo event generator, which is available for first experimental studies. We show representative phenomenological results of interest for the MUonE experiment and examine in detail the impact of the various sources of radiative corrections under different selection criteria, in order to study the dependence of the NLO contributions on the applied cuts. The study represents the first step towards the realisation of a high-precision Monte Carlo code necessary for data analysis.Comment: 25 pages, 2 tables, 14 figures. Minor typos corrected, reference 31 updated. Version matching publication on JHE

    Matching perturbative and Parton Shower corrections to Bhabha process at flavour factories

    Get PDF
    We report on a high-precision calculation of the Bhabha process in Quantum Electrodynamics, of interest for precise luminosity determination of electron-positron colliders involved in R measurements in the region of hadronic resonances. The calculation is based on the matching of exact next-to-leading order corrections with a Parton Shower algorithm. The accuracy of the approach is demonstrated in comparison with existing independent calculations and through a detailed analysis of the main components of theoretical uncertainty, including two-loop corrections, hadronic vacuum polarization and light pair contributions. The calculation is implemented in an improved version of the event generator BABAYAGA with a theoretical accuracy of the order of 0.1%. The generator is now available for high-precision simulations of the Bhabha process at flavour factories.Comment: 34 pages, 8 figures, uses elsart.cls. Version to appear on Nuclear Physics

    Measuring the leading-order hadronic contribution to the muon g-2 in the space-like region

    Full text link
    A new experiment is proposed to measure the running of the electromagnetic coupling constant in the space-like region by scattering high-energy muons on atomic electrons of a low-Z target. The differential cross section of the elastic process μe → μe provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly aμHLO. It is argued that by using the 150-GeV muon beam available at the CERN North Area, with an average rate of ~ 1.3 × 107 muon/s, a statistical uncertainty of ~ 0.3% can be achieved on aμHLO after two years of data taking. The direct measurement of aμHLO via μe scattering will provide an independent determination and consolidate the theoretical prediction for the muon g-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon g-2 experiments at Fermilab and JPARC

    Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC

    Full text link
    Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the p\smartpap \to {\rm lepton} + X physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, WW precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high WW transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed O(ααs){\cal O}(\alpha \alpha_s) corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
    corecore