571 research outputs found

    Dynamics of continental deformation in Asia

    Get PDF
    International audienceThe relevance of plate tectonics concepts to the description of deformation of large continental areas like Asia is subject to much debate. For some, the deformation of continents is better described by rigid motion of lithospheric blocks with strain concentrated along narrow fault zones. For others, it is better described by viscous flow of a continuously deforming solid in which faults play a minor role. Discriminating these end-member hypotheses requires spatially dense measurements of surface strain rates covering the whole deforming area. Here we revisit the issue of the forces and rheological structure that control present-day deformation in Asia. We use the ‘‘thin sheet'' theory, with deformation driven by the balance of boundary and buoyancy stresses acting on a faulted lithosphere with laterally varying strength. Models are validated against a recent, homogeneous, GPS velocity field that covers most of Asia. In the models, deformation in compressional areas (Himalayas, Tien Shan, Altay) is well reproduced with strong coupling at the India/Eurasia plate contact, which allows for boundary forces to transfer into Asia. Southeastward motions observed in north and south China, however, require tensional, oceanward directed stresses, possibly generated by gravitational potential energy gradients across the Indonesian and Pacific subductions. Model and observed strain rates show that a large part of Asia undergoes no resolvable strain, with a kinematics apparently consistent with block- or plate-like motions. Internal strain, possibly continuous, is limited to high-elevation, mechanically weaker areas. Lateral variations of lithospheric strength appear to control the style of deformation in Asia, with a dynamics consistent with the thin sheet physical framework

    Role of mantle flow in Nubia-Somalia plate divergence

    No full text
    Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.This work was supported by NSF award EAR-0538119 to E.C. D.S.S. was supported by NSF graduate research fellowship EAR-2009052513. G.I. acknowledges support from the Ringwood Fellowship at the Australian National University

    Continental deformation in Asia from a combined GPS solution

    Get PDF
    International audienceAfter decades of research on continental tectonics, there is still no consensus on the mode of deformation of continents or on the forces that drive their deformation. In Asia the debate opposes edge-driven block models, requiring a strong lithosphere with strain localized on faults, to buoyancy-driven continuous models, requiring a viscous lithosphere with pervasive strain. Discriminating between these models requires continent-wide estimates of lithospheric strain rates. Previous efforts have relied on the resampling of heterogeneous geodetic and Quaternary faulting data sets using interpolation techniques. We present a new velocity field based on the rigorous combination of geodetic solutions with relatively homogeneous station spacing, avoiding technique-dependend biases inherent to interpolation methods. We find (1) unresolvable strain rates (< 3×10923 /yr) over a large part of Asia, with current motions well-described by block or microplate rotations, and (2) internal strain, possibly continuous, limited to high-elevation areas

    Geodetic measurements of crustal deformation in the western Mediterranean and

    Get PDF
    Abstract -Geodetic measurements of crustal deformation over large areas deforming at slow rates (&lt;5 mm/yr over more than 1000 km), such as the Western Mediterranean and Western Europe, are still a challenge because (1) these rates are close to the current resolution of the geodetic techniques, (2) inaccuracies in the reference frame implementation may be on the same order as the tectonic velocities. We present a new velocity field for Western Europe and the Western Mediterranean derived from a rigorous combination of (1) a selection of sites from the ITRF2000 solution, (2) a subset of sites from the European Permanent GPS Network solution, (3) a solution of the French national geodetic permanent GPS network (RGP), and (4) a solution of a permanent GPS network in the western Alps (REGAL). The resulting velocity field describes horizontal crustal motion at 64 sites in Western Europe with an accuracy on the order of 1 mm/yr or better. Its analysis shows that Central Europe behaves rigidly at a 0.4 mm/yr level and can therefore be used to define a stable Europe reference frame. In that reference frame, we find that most of Europe, including areas west of the Rhine graben, the Iberian peninsula, the Ligurian basin and the Corsica-Sardinian block behaves rigidly at a 0.5 mm/yr level. In a second step, we map recently published geodetic results in the reference frame previously defined. Geodetic data confirm a counterclockwise rotation of the Adriatic microplate with respect to stable Europe, that appears to control the strain pattern along its boundaries. Active deformation in the Alps, Apennines, and Dinarides is probably driven by the independent motion of the Adriatic plate rather than by the Africa-Eurasia convergence. The analysis of a global GPS solution and recently published new estimates for the African plate kinematics indicate that the Africa-Eurasia plate motion may be significantly different from the NUVEL1A values. In particular, geodetic solutions show that the convergence rate between Africa and stable Europe may be 30-60% slower than the NUVEL1A prediction and rotated 10-30°counterclockwise in the Mediterranean

    An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks

    Full text link
    Australia and most other countries are adopting renewable energy generation as the dominant means of reducing dependence on fossil fuels. This has been made more feasible by the exponential take-up of solar photovoltaic (PV) systems and their concurrent production scale-up and cost decline. Rooftop solar PV, combined with battery storage, seems likely to be the dominant means of providing household electricity needs. In response to the technical challenges from rooftop PV, network utilities have implemented various low cost options to cope with PV’s impact on network voltages. However, if we want this clean energy technology to fully utilise the available roof space and eventually meet residential electricity needs, additional hardware, control and commercial options will need to be adopted by both network utilities and their customers to overcome the technical barriers, especially voltage rise. This paper presents the authors’ evaluations of options to mitigate voltage rise, including operating solar inverters with reactive power absorption (var absorbing), dependent only on solar power output or operating the solar inverters in a volt–var response mode (voltage droop control) where the inverter adjusts its reactive power (Q) in response to changes in its terminal voltage – Q(V). This paper also considers the fulltime Q(V) option, where an inverter’s reactive power capacity is independent of solar conditions – statcom mode. The network utility option of using line drop compensation (LDC – used on long rural MV feeders) on urban MV feeders during daylight hours is assessed to lessen voltage rise on LV feeders with low net loading or reverse power flow due to high solar PV generation. The paper concludes that a combination of solar inverters performing fast fulltime voltage droop control outside a voltage deadband (statcom mode) and HV/MV substation transformers with slow acting daytime LDC mitigates voltage rise, whilst limiting feeder reactive power requirements

    An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks

    Get PDF
    Australia and most other countries are adopting renewable energy generation as the dominant means of reducing dependence on fossil fuels. This has been made more feasible by the exponential take-up of solar photovoltaic (PV) systems and their concurrent production scale-up and cost decline. Rooftop solar PV, combined with battery storage, seems likely to be the dominant means of providing household electricity needs. In response to the technical challenges from rooftop PV, network utilities have implemented various low cost options to cope with PV’s impact on network voltages. However, if we want this clean energy technology to fully utilise the available roof space and eventually meet residential electricity needs, additional hardware, control and commercial options will need to be adopted by both network utilities and their customers to overcome the technical barriers, especially voltage rise. This paper presents the authors’ evaluations of options to mitigate voltage rise, including operating solar inverters with reactive power absorption (var absorbing), dependent only on solar power output or operating the solar inverters in a volt–var response mode (voltage droop control) where the inverter adjusts its reactive power (Q) in response to changes in its terminal voltage – Q(V). This paper also considers the fulltime Q(V) option, where an inverter’s reactive power capacity is independent of solar conditions – statcom mode. The network utility option of using line drop compensation (LDC – used on long rural MV feeders) on urban MV feeders during daylight hours is assessed to lessen voltage rise on LV feeders with low net loading or reverse power flow due to high solar PV generation. The paper concludes that a combination of solar inverters performing fast fulltime voltage droop control outside a voltage deadband (statcom mode) and HV/MV substation transformers with slow acting daytime LDC mitigates voltage rise, whilst limiting feeder reactive power requirements

    Self-avoiding fractional Brownian motion - The Edwards model

    Get PDF
    In this work we extend Varadhan's construction of the Edwards polymer model to the case of fractional Brownian motions in Rd\R^d, for any dimension d≥2d\geq 2, with arbitrary Hurst parameters H≤1/dH\leq 1/d.Comment: 14 page

    Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements

    Get PDF
    Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10–13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-échelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments
    • …
    corecore