743 research outputs found

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Partial rupture of the quadriceps muscle in a child

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quadriceps femoris muscle ruptures usually occur in the middle-aged population. We present a 4-year-old patient with partial rupture of the quadriceps femoris muscle. To our knowledge, this is the youngest patient reported with a quadriceps femoris muscle rupture.</p> <p>Case Presentation</p> <p>A 4-year-old girl admitted to our clinic with left knee pain and limitation in knee movements. Her father reported that she felt pain while jumping on sofa. There was no direct trauma to thigh or knee. We located a palpable soft tissue swelling at distal anterolateral side of thigh. The history revealed that 10 days ago the patient was treated for upper tract respiratory infection with intramuscular Clindamycin for 7 days. When we consulted the patient with her previous doctor and nurse, we learnt that multiple daily injections might be injected to same side of left thigh. MRI showed a partial tear of vastus lateralis muscle matching with the injection sites. The patient treated with long leg half-casting for three weeks. Clinical examination and knee flexion had good results with conservative treatment.</p> <p>Conclusions</p> <p>Multiple intramuscular injections may contribute to damage muscles and make prone to tears with muscle contractions. Doctors and nurses must be cautious to inject from different parts of both thighs.</p

    Spinodal-assisted crystallization in polymer melts

    Get PDF
    Recent experiments in some polymer melts quenched below the melting temperature have reported spinodal kinetics in small-angle x-ray scattering before the emergence of a crystalline structure. To explain these observations we propose that the coupling between density and chain conformation induces a liquid-liquid binodal within the equilibrium liquid-crystalline solid coexistence region. A simple phenomenological theory is developed to illustrate this idea, and several experimentally testable consequences are discussed. Shear is shown to enhance the kinetic role of the hidden binodal

    Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells

    Get PDF
    Cataloged from PDF version of article.Versatility of Bodipy (4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene) dyes was further expanded in recent dye-sensitized solar cell applications. Here we report a series of derivatives designed to address earlier problems in Bodipy sensitized solar cells. In the best case example, an overall efficiency of a modest 2.46% was achieved, but panchromatic nature of the dyes is quite impressive. This is the best reported efficiency in liquid electrolyte solar cells with Bodipy dyes as photosensitizers

    Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping

    Get PDF
    Zinc (Zn) deficiency is a widespread problem which reduces yield and grain nutritive value in many cereal growing regions of the world. While there is considerable genetic variation in tolerance to Zn deficiency (also known as Zn efficiency), phenotypic selection is difficult and would benefit from the development of molecular markers. A doubled haploid population derived from a cross between the Zn inefficient genotype RAC875-2 and the moderately efficient genotype Cascades was screened in three experiments to identify QTL linked to growth under low Zn and with the concentrations of Zn and iron (Fe) in leaf tissue and in the grain. Two experiments were conducted under controlled conditions while the third examined the response to Zn in the field. QTL were identified using an improved method of analysis, whole genome average interval mapping. Shoot biomass and shoot Zn and Fe concentrations showed significant negative correlations, while there were significant genetic correlations between grain Zn and Fe concentrations. Shoot biomass, tissue and grain Zn concentrations were controlled by a number of genes, many with a minor effect. Depending on the traits and the site, the QTL accounted for 12–81% of the genetic variation. Most of the QTL linked to seedling growth under Zn deficiency and to Zn and Fe concentrations were associated with height genes with greater seedling biomass associated with lower Zn and Fe concentrations. Four QTL for grain Zn concentration and a single QTL for grain Fe concentration were also identified. A cluster of adjacent QTL related to the severity of symptoms of Zn deficiency, shoot Zn concentration and kernel weight was found on chromosome 4A and a cluster of QTL associated with shoot and grain Fe concentrations and kernel weight was found on chromosome 3D. These two regions appear promising areas for further work to develop markers for enhanced growth under low Zn and for Zn and Fe uptake. Although there was no significant difference between the parents, the grain Zn concentration ranged from 29 to 43 mg kg−1 within the population and four QTL associated with grain Zn concentration were identified. These were located on chromosomes 3D, 4B, 6B and 7A and they described 92% of the genetic variation. Each QTL had a relatively small effect on grain Zn concentration but combining the four high Zn alleles increased the grain Zn by 23%. While this illustrates the potential for pyramiding genes to improve grain Zn, breeding for increased grain Zn concentration requires identification of individual QTL with large effects, which in turn requires construction and testing of new mapping populations in the future

    Discovering gene annotations in biomedical text databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data.</p> <p>Results</p> <p>In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products.</p> <p>In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general.</p> <p>Conclusion</p> <p>GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.</p

    Nitrogen effect on zinc biofortification of maize and cowpea in Zimbabwean smallholder farms

    Get PDF
    Agronomic biofortification of crops with zinc (Zn) can be enhanced under increased nitrogen (N) supply. Here, the effects of N fertilizer on grain Zn concentration of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) were determined at two contrasting sites in Zimbabwe over two seasons. All treatments received soil and foliar zinc‐sulphate fertilizer. Seven N treatments, with three N rates (0, 45, and 90 kg ha−1 for maize; 0, 15, and 30 kg ha−1 for cowpea), two N forms (mineral and organic), and combinations thereof were used for each crop in a randomized complete block design (n = 4). Maize grain Zn concentrations increased from 27.2 to 39.3 mg kg−1 across sites. At 45 kg N ha−1, mineral N fertilizer increased maize grain Zn concentration more than organic N from cattle manure or a combination of mineral and organic N fertilizers. At 90 kg N ha−1, the three N fertilizer application strategies had similar effects on maize grain Zn concentration. Co‐application of N and Zn fertilizer was more effective at increasing Zn concentration in maize grain than Zn fertilizer alone. Increases in cowpea grain Zn concentration were less consistent, although grain Zn concentration increased from 39.8 to 52.7 mg kg−1 under optimal co‐applications of N and Zn. Future cost/benefit analyses of agronomic biofortification need to include information on benefits of agro‐fortified grain, complex farmer management decisions (including cost and access to both N and Zn fertilizers), as well as understanding of the spatial and site‐specific variation in fertilizer responses

    Iron bioavailability in two commercial cultivars of wheat: a comparison between wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic acid on iron uptake into Caco-2 cells

    Get PDF
    Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model. Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells than ascorbic acid or 2'-deoxymugineic acid, another metal chelator present in plants

    In Vitro Cell Models for Ophthalmic Drug Development Applications

    Get PDF
    © Sara Shafaie et al. 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Tissue engineering is a rapidly expanding field that aims to establish feasible techniques to fabricate biologically equivalent replacements for diseased and damaged tissues/organs. Emerging from this prospect is the development of in vitro representations of organs for drug toxicity assessment. Due to the ever-increasing interest in ocular drug delivery as a route for administration as well as the rise of new ophthalmic therapeutics, there is a demand for physiologically accurate in vitro models of the eye to assess drug delivery and safety of new ocular medicines. This review summarizes current existing ocular models and highlights the important factors and limitations that need to be considered during their use.Peer reviewe

    Subtle effects of environmental stress observed in the early life stages of the Common frog, Rana temporaria

    Get PDF
    Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue ‘fingerprint’ in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection- Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism
    corecore