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Versatility of Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes was further expanded in recent

dye-sensitized solar cell applications. Here we report a series of derivatives designed to address earlier

problems in Bodipy sensitized solar cells. In the best case example, an overall efficiency of a modest

2.46% was achieved, but panchromatic nature of the dyes is quite impressive. This is the best reported

efficiency in liquid electrolyte solar cells with Bodipy dyes as photosensitizers.
Introduction

The dye sensitized solar cell (DSSC) concept is a viable alterna-

tive to traditional semiconductor based photovoltaic constructs.1

Practical potential is also being realized in the form of rapid

commercialization.2 One of the primary issues, which may

benefit from rational design, is the choice of the sensitizer dye.

Near IR sensitizability and panchromaticity are important and

challenging goals and these can be attained in principle by

designing appropriate organic dyes.3 We are particularly inter-

ested in a class of dyes known as Bodipy dyes.4 Bodipy dyes are

important fluorophores with a multitude of potential applica-

tions.5 Recent developments in Bodipy chemistry6 allow diverse

modification on the core structure. Through these modifications,

many characteristics of the parent chromophore can be altered in

the desired direction, for example, it is possible to shift absorp-

tion wavelength from 500 nm to 800 nm with simple chemical

transformations.7 In addition, strong electron donor and

acceptor groups can be placed on the chromophore. Solubility

and aggregation characteristics of the dyes can also be modulated

as needed.8
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Design and synthesis

The first rationally designed example of a Bodipy based sensitizer

was reported a few years ago,9 followed by a few more recent

articles including both liquid electrolyte8 and solid state10 based

DSSCs. It is clear that optimal solar cell performance of

a photosensitizer is dependent on a large number of parameters;

however, absorption range, anchoring groups and the direction
Fig. 1 Sensitizers PS-1 through PS-6.
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of electronic reorganization on excitation should be among the

most important ones. Based on earlier data8a,10a and with the

above considerations, we set out to synthesize different Bodipy-

based photosensitizers for use in liquid electrolyte dye sensitized

solar cells (Fig. 1 and Fig. 3). In each one of them, we tried to
Fig. 2 Reaction scheme fo

950 | Chem. Sci., 2011, 2, 949–954
investigate the role of at least one parameter in solar cell

performance. In our first report8a of a Bodipy based photosen-

sitizer, central chromophoric core was derived from 1,3,5,7-tet-

ramethyl Bodipy. As a result, in that construct the meso-phenyl

subsitutent was forced to an orthogonal arrangement in relation
r the target sensitizers.

This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 The molecular structure of the sensitizer PS-7.

Fig. 4 Normalized absorbance spectra of sensitizers PS-1 through PS-6

in CHCl3.
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to the Bodipy pseudo-plane. The orthogonality of the anchor

bearing phenyl group is very likely to limit conjugation and

reduce electron flow from the donor to the anchor/acceptor

group. With this perspective, it seemed highly reasonable to

synthesize a new distyryl Bodipy where two protruding methyl

groups at positions 1 and 7 were removed (PS-1).

In the second dye (PS-2), we wanted to study the effect of

a stronger donor group on the overall solar cell efficiency. To

that end, we replaced diphenylaminophenyl group with bis-(p-

methoxyphenyl)aminophenyl groups. In designing PS-3, our aim

was to find any correlation between the efficiency and the relative

ease of populating triplet states. In that compound, placement of

two iodo substituents ensure efficient inter system crossing

through heavy atom effect related spin–orbit coupling. During

the course of this study, we realized that panchromatic absorp-

tion, while highly desired, is a consequence of aggregation on

titania for the Bodipy derivatives that we studied.

Thus a reasonable goal was to introduce long alkyl chains on

the chromophore, either on the donor side or on the meso-

substituent. In PS-4, we replaced diphenylaminophenyl groups

with gallic aldehyde derived donor groups. In PS-5, in addition

placing these long alkyl groups on the meso substituent, the

anchor group is attached directly to the Bodipy core through an

ethynyl linkage. PS-6 resembles PS-5 in that aggregation limiting

alkyl groups are on the meso substituent and the anchor group is

attached directly to the Bodipy core. But here, instead of benzoic

acid moiety the anchor group is also a strong acceptor which

happens to be a common feature in most photosensitizers for

DSSC,11 a cyanoacetic acid derived group.

On the other hand, PS-7 (Fig. 3) should be considered sepa-

rately because with that compound, we wanted to study the effect

of excitation energy transfer (mostly through space) in
Table 1 Optical and electrochemical data of sensitizers PS-1 through PS-6

Dye labs
a/nm 3max

a/M�1 cm�1 lems
a/nm ff

a,b/% sf
a/ns

PS-1 724 60000 799 4.5 2.1
PS-2 746 66000 835 0.7 0.7
PS-3 761 68000 824 <0.001 n.d.d

PS-4 668 74000 699 32 3.7
PS-5 707 71000 758 12 2.8
PS-6 695 79000 742 11 2.9

a Data were collected in CHCl3. b PS-4 was determined relative to tetrast
c Electrochemical data were collected in CH2Cl2. Potentials were quoted with

This journal is ª The Royal Society of Chemistry 2011
a photosensitizer. To that end, two Bodipy chromophores were

tethered onto the 2 and 6 positions of the core chromophore,

which happens to be a longer wavelength absorbing (hence,

energy acceptor) distyryl Bodipy dye. Our expectations were;

stronger absorption in the entire visible spectrum, enhanced

panchromaticity and improved overall photovoltaic yield.

In the synthesis, apart from the well-known Bodipy reaction

using the appropriate aldehyde and pyrrole, Knoevenagel and

Sonogashira reactions have also been employed (Fig. 2). In PS-3,

iodination protocol has been employed with quantitative yield.12

The yields are acceptable in all cases, except the final coupling

reaction for PS-7. The details of the reactions have been given in

the Supporting Information†.
Results and discussion

Photophysical properties

In the characterization of the photosensitizers (Table 1), our first

goal was to acquire absorption spectra of the sensitizers in

solution and on titania and also to demonstrate efficient energy

transfer in PS-7. Absorption spectra in solution (Fig. 4) show

typical disytryl Bodipy bands (S0 / S1) in the long wavelength

region (650–760 nm). The absorption peak is somewhat broad,

which is not a disadvantage in solar cell applications.

PS-7 shows two distinct absorption bands, one centered

around 527 nm and one 735 nm (Fig. 5-top). In PS-7, we expect

energy transfer from two side chain linked Bodipys to the near IR
Eox
c/V Ered

c/V EHOMO
c/eV ELUMO

c/eV Eband gap
c

0.78 �0.74 5.08 3.56 1.52
0.56 �0.87 5.05 3.62 1.43
0.86 �0.51 5.17 3.79 1.38
0.92 �0.74 5.25 3.60 1.65
0.68 �0.87 5.03 3.48 1.55
0.72 �0.94 5.21 3.55 1.66

yryl dye 10 and others were to tetrasyryl dye 3 according to ref. 7b.
reference to the internal reference electrode. d not determined.

Chem. Sci., 2011, 2, 949–954 | 951
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Fig. 5 The absorption spectra of compounds BOD1, BOD2, and PS-7

at equal absorbance values at 527 nm (for BOD1 and PS-7) and at

725 nm (BOD2 and PS-7) (top) and emission spectra of the energy

transfer cassette (PS-7) in CHCl3 (bottom) in comparison to the selected

reference compounds.

Fig. 6 Excitation spectrum of PS-7. Emission data were collected at 781

nm with an optically dilute solution in CHCl3.

Fig. 7 Structures of model compounds; BOD1 and BOD2.

Fig. 8 Cyclic voltammogram of PS-1.
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absorbing Bodipy core. Model compounds of these two Bodipy

units have been synthesized in order to investigate the energy

transfer; BOD1 resembles the side chain Bodipy and BOD2

resembles the core unit (Fig. 7). In Fig. 5-top, equal absorbance

solutions of the two model compounds and PS-7 were studied,

and the efficiency of energy transfer was clearly demonstrated

though a comparative depiction of the emission spectra.

Low fluorescence in PS-7 compared to BOD1 at 540 nm and

fluorescence enhancement at 781 nm compared to BOD2 is

a clear confirmation of the energy transfer (Fig. 5-bottom).

Quantum yield of BOD1 at 540 nm is 0.75, and decreased to 0.05

when employed as an antenna module in PS-7, suggesting a 96%

energy transfer efficiency. Also, the excitation spectrum of PS-7

in Fig. 6 clearly demonstrates energy transfer from the donor to

acceptor chromophores, when emission data is collected at 781

nm. Two peaks correspond to the donor (529 nm) and acceptor

(737 nm) moieties.
Electrochemistry of the sensitizers

Cyclic voltammetry (CV) results of the Bodipy dyes are given in

Table 1. In our previous8a and present CV results, Bodipy

derivatives showed both reversible reduction and oxidation

potentials (Fig. 8). The double oxidation peaks near 0.65 and
952 | Chem. Sci., 2011, 2, 949–954
0.8 V are likely to be associated with the oxidation of the Bodipy

unit and the DPAP (diphenylaminophenyl) moiety, somewhat

perturbed13 by the electron withdrawing Bodipy core, respec-

tively. It is clear that the LUMO energy levels are appropriate

(higher than the conduction band of TiO2) for the efficient charge

injection from the LUMO level of the sensitizers to the

conduction band of the nanocrsytalline titania (4.2 eV). In order

to have a continuous electron cycle within the cell, the oxidized

dye has to be reduced by the electron donation from the liquid
This journal is ª The Royal Society of Chemistry 2011
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electrolyte redox couple (4.9 eV) which is also an energetically

favorable process with Bodipy dyes. Charge separation (wide

band gap) is strongly needed between the acceptor and donor

moieties of the sensitizers for efficient electron transfer. While

PS-4 and PS-6 have the wider band gaps, PS-3 has the lowest

value. This low charge separation associated with the PS-3

should be considered as one of the reasons for its low overall

conversion efficiency.
Fig. 10 Current vs. voltage graphs of the photosensitizers.
Photovoltaic characterization

Typical cell characterization data are presented in Table 2. The

IPCE (incident photon to current efficiency) plot as a function of

wavelength is essentially flat between the 400–850 nm region,

showing a maximum value (30%) around 750 nm (Fig. 9). PS-1

gave an open circuit voltage (Voc) of 0.47 V, a short-circuit

photocurrent density (Jsc) of 5.95 mA cm�2, and a fill factor (ff)

of 0.67, corresponding to an overall conversion efficiency (h) of

1.88%. Concluding from the data acquired, removal of methyl

groups enhances overall efficiency.
Table 2 DSSC performance parameters of Bodipy dyes

Dye Voc
a/V Jsc

a/mA cm�2 ffa ha/%

PS-1b 0.47 5.95 0.67 1.88
PS-1c 0.43 9.17 0.62 2.46
PS-2b 0.46 4.52 0.63 1.32
PS-3b 0.35 1.05 0.61 0.23
PS-4b 0.47 5.45 0.71 1.81
PS-5b 0.52 3.74 0.71 1.40
PS-6b 0.42 2.55 0.70 0.75
PS-7b 0.40 0.69 0.72 0.20

a Voc is the open-circuit potential, Jsc, short circuit current, ff is the fill
factor, and h is the overall efficiency of the cell under standard
conditions. b Dipping: 4 h in 0.1 mM THF, TiO2: 7 + 4, Electrolyte:
A6986 [0.6 M 1-butyl-3-methyl imidazolium iodide (BMII), 0.1 M LiI,
0.05 M I2, 0.05 M tert-butylpyridine (TBP) in Acetonitrile/Valeronitrile
(85/15 v/v)]. c Dipping: 24 h in CB/EtOH (1 : 1) + 2 mM cheno
(chenodeoxycholic acid), TiO2: 8 + 5 + TiCl4, Electrolyte: Z1040 [1 M
LiI, 0.044 M I2, 0.25 M TBP in Acetonitrile/Valeronitrile (85/15 v/v)].

Fig. 9 Incident photon to current conversion efficiencies as a function of

wavelength for the liquid electrolyte based DSSCs.

This journal is ª The Royal Society of Chemistry 2011
In PS-2, addition of p-methoxy groups on the diphenylamino

phenyl moiety seems to provide no positive effect on overall

conversion efficiency. Compared to PS-1, PS-2 has a lower

short-circuit photocurrent density value. Methoxy substitution

just shifted the absorption wavelength and increased the extinc-

tion coefficient.

The iodinated Bodipy (PS-3) and the energy transfer cassette

sensitizers (PS-7) performed poorly. We suspect easy access to

the triplet manifold may open the path to degradative chemical

reactions in the diiodo compound and the flexibility of the energy

transfer cassette might have led to vibrational losses in energy.

PS-3 and PS-7 have the lowest short-circuit photocurrent

densities among the sensitizers, which suggests poor electron

transfer from the excited dyes to the conduction band of the

semiconductor.

Photovoltaic parameters of PS-4 are similar to PS-1. In fact,

electron donation from the 3,4,5-tris(octadecyloxy) group is less

than the diphenylamino phenyl moiety, suppressed aggregate

formation on TiO2 with the help of long alkyl chains gave

compatible overall efficiency value.

The orientation of the anchoring groups is also important.

Based on our earlier theoretical calculations,8a it appears that the

meso-position (8-position) is better suited for efficient electron

injection compared to the 2-position of the Bodipy core. For

example, comparing PS-1 and PS-5 would be highly relevant in

providing experimental insight into this argument. When the

anchoring group is substituted in the meso-position (PS-1),

overall conversion is 1.88%. On the other hand, it is 1.40% for the

PS-5 when the anchor group is attached to the 2-position.

Further proof for the effectiveness of substitution through the

meso-position is the comparison of PS-6 and the Bodipy deriv-

ative that we published earlier.8a Both have a cyanoacetic acid

derived group as an anchor, but the positions are different.

Overall conversion efficiencies are 0.75% (2-position substituted)

and 1.66% (meso substituted, Voc: 0.56 V, Jsc: 4.03 mA cm�2, ff:

0.73) respectively.

In our most efficient sensitizer, PS-1, we used chenodeox-

ycholic acid (cheno) as an additive, which seems to control

aggregation and cause an additional boost in the efficiency by

improving short circuit current. DSSC with cheno additive gave

9.174 mA cm�2 (Fig. 10) short circuit photocurrent density (Jsc),

corresponding to an overall efficiency of 2.46%. This is the best
Chem. Sci., 2011, 2, 949–954 | 953
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reported efficiency in liquid electrolyte solar cells with Bodipy

dyes as photosensitizers. Panchromacity remains as impressive as

ever. As a matter of fact, the distyryl-Bodipy dyes especially PS-

1, performs better than most other organic dyes in the near IR

region in terms of photon to current conversion efficiency.

Conclusions

In conclusion, essentially flat curves in the IPCE plot between the

wavelengths of 400–800 nm are highly noteworthy, highlighting

the panchromatic nature of these dyes. Bodipy dyes show

remarkable properties especially as near IR sensitizers. Modifi-

cations for improving the performance of these dyes in other

parts of the solar spectrum will make them highly promising as

sensitizer dyes for solar cells. Fortunately, it is reasonable to

expect the rich chemistry of the Bodipy dyes to yield such

derivatives. Our work along this line is in progress.
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