93 research outputs found

    Mucosal-Associated Invariant T Cell Levels Are Reduced in the Peripheral Blood and Lungs of Children With Active Pulmonary Tuberculosis

    Get PDF
    Mucosal associated invariant T (MAIT) cells are unconventional, semi-invariant T lymphocytes that recognize microbial-derived vitamin B2 (riboflavin) biosynthesis precursor derivatives presented by the monomorphic MHC class 1-related (MR1) molecule. Upon microbial infection, MAIT cells rapidly produce cytokines and cytotoxic effectors, and are thus important players in anti-microbial defense. MAIT cells are protective in experimental models of infection and are decreased in the blood of adult patients with bacterial infections, including Mycobacterium tuberculosis (Mtb). In children, the risk of rapid progression to active tuberculosis (TB) following Mtb infection is higher than in adults. Whether MAIT cells influence the outcome of Mtb infection in children is therefore, an important issue. We analyzed MAIT cell numbers and phenotype in 115 children investigated for pulmonary TB and determined their potential correlation with disease progression. MAIT cells were reduced in numbers and activated in the peripheral blood of children with active TB as compared to those with latent TB infection (LTBI) and healthy children. Moreover, MAIT cells did not accumulate and did not proliferate in the lung of children with active TB. These results suggest that MAIT cells may be important in preventing progression of Mtb infection to active TB in children

    Evidence After Imputation for a Role of MICA Variants in Nonprogression and Elite Control of HIV Type 1 Infection

    Get PDF
    Past genome-wide association studies (GWAS) involving individuals with AIDS have mainly identified associations in the HLA region. Using the latest software, we imputed 7 million single-nucleotide polymorphisms (SNPs)/indels of the 1000 Genomes Project from the GWAS-determined genotypes of individuals in the Genomics of Resistance to Immunodeficiency Virus AIDS nonprogression cohort and compared them with those of control cohorts. The strongest signals were in MICA, the gene encoding major histocompatibility class I polypeptide-related sequence A (P = 3.31 × 10−12), with a particular exonic deletion (P = 1.59 × 10−8) in full linkage disequilibrium with the reference HCP5 rs2395029 SNP. Haplotype analysis also revealed an additive effect between HLA-C, HLA-B, and MICA variants. These data suggest a role for MICA in progression and elite control of human immunodeficiency virus type 1 infectio

    Regulation of CD4+NKG2D+ Th1 cells in patients with metastatic melanoma treated with sorafenib : role of IL-15Rα and NKG2D triggering

    Get PDF
    Beyond cancer-cell intrinsic factors, the immune status of the host has a prognostic impact on patients with cancer and influences the effects of conventional chemotherapies. Metastatic melanoma is intrinsically immunogenic, thereby facilitating the search for immune biomarkers of clinical responses to cytotoxic agents. Here, we show that a multi-tyrosine kinase inhibitor, sorafenib, upregulates interleukin (IL)-15Rα in vitro and in vivo in patients with melanoma, and in conjunction with natural killer (NK) group 2D (NKG2D) ligands, contributes to the Th1 polarization and accumulation of peripheral CD4+NKG2D+ T cells. Hence, the increase of blood CD4+NKG2D+ T cells after two cycles of sorafenib (combined with temozolomide) was associated with prolonged survival in a prospective phase I/II trial enrolling 63 patients with metastatic melanoma who did not receive vemurafenib nor immune checkpoint-blocking antibodies. In contrast, in metastatic melanoma patients treated with classical treatment modalities, this CD4+NKG2D+ subset failed to correlate with prognosis. These findings indicate that sorafenib may be used as an "adjuvant" molecule capable of inducing or restoring IL-15Rα/IL-15 in tumors expressing MHCclass I-related chain A/B (MICA/B) and on circulating monocytes of responding patients, hereby contributing to the bioactivity of NKG2D+ Th1 cells.peer-reviewe

    CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner

    Get PDF
    Tumor growth promotes the expansion of CD4+CD25+ regulatory T (T reg) cells that counteract T cell–mediated immune responses. An inverse correlation between natural killer (NK) cell activation and T reg cell expansion in tumor-bearing patients, shown here, prompted us to address the role of T reg cells in controlling innate antitumor immunity. Our experiments indicate that human T reg cells expressed membrane-bound transforming growth factor (TGF)–β, which directly inhibited NK cell effector functions and down-regulated NKG2D receptors on the NK cell surface. Adoptive transfer of wild-type T reg cells but not TGF-β−/− T reg cells into nude mice suppressed NK cell–mediated cytotoxicity, reduced NKG2D receptor expression, and accelerated the growth of tumors that are normally controlled by NK cells. Conversely, the depletion of mouse T reg cells exacerbated NK cell proliferation and cytotoxicity in vivo. Human NK cell–mediated tumor recognition could also be restored by depletion of T reg cells from tumor-infiltrating lymphocytes. These findings support a role for T reg cells in blunting the NK cell arm of the innate immune system

    Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G

    Get PDF
    Background: The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings: We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance: We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality

    Human Herpesvirus 8 (HHV8) Sequentially Shapes the NK Cell Repertoire during the Course of Asymptomatic Infection and Kaposi Sarcoma

    Get PDF
    The contribution of innate immunity to immunosurveillance of the oncogenic Human Herpes Virus 8 (HHV8) has not been studied in depth. We investigated NK cell phenotype and function in 70 HHV8-infected subjects, either asymptomatic carriers or having developed Kaposi's sarcoma (KS). Our results revealed substantial alterations of the NK cell receptor repertoire in healthy HHV8 carriers, with reduced expression of NKp30, NKp46 and CD161 receptors. In addition, down-modulation of the activating NKG2D receptor, associated with impaired NK-cell lytic capacity, was observed in patients with active KS. Resolution of KS after treatment was accompanied with restoration of NKG2D levels and NK cell activity. HHV8-latently infected endothelial cells overexpressed ligands of several NK cell receptors, including NKG2D ligands. The strong expression of NKG2D ligands by tumor cells was confirmed in situ by immunohistochemical staining of KS biopsies. However, no tumor-infiltrating NK cells were detected, suggesting a defect in NK cell homing or survival in the KS microenvironment. Among the known KS-derived immunoregulatory factors, we identified prostaglandin E2 (PGE2) as a critical element responsible for the down-modulation of NKG2D expression on resting NK cells. Moreover, PGE2 prevented up-regulation of the NKG2D and NKp30 receptors on IL-15-activated NK cells, and inhibited the IL-15-induced proliferation and survival of NK cells. Altogether, our observations are consistent with distinct immunoevasion mechanisms that allow HHV8 to escape NK cell responses stepwise, first at early stages of infection to facilitate the maintenance of viral latency, and later to promote tumor cell growth through suppression of NKG2D-mediated functions. Importantly, our results provide additional support to the use of PGE2 inhibitors as an attractive approach to treat aggressive KS, as they could restore activation and survival of tumoricidal NK cells

    Hepatitis C Virus (HCV) Evades NKG2D-Dependent NK Cell Responses through NS5A-Mediated Imbalance of Inflammatory Cytokines

    Get PDF
    Understanding how hepatitis C virus (HCV) induces and circumvents the host's natural killer (NK) cell-mediated immunity is of critical importance in efforts to design effective therapeutics. We report here the decreased expression of the NKG2D activating receptor as a novel strategy adopted by HCV to evade NK-cell mediated responses. We show that chronic HCV infection is associated with expression of ligands for NKG2D, the MHC class I-related Chain (MIC) molecules, on hepatocytes. However, NKG2D expression is downmodulated on circulating NK cells, and consequently NK cell-mediated cytotoxic capacity and interferon-γ production are impaired. Using an endotoxin-free recombinant NS5A protein, we show that NS5A stimulation of monocytes through Toll-like Receptor 4 (TLR4) promotes p38- and PI3 kinase-dependent IL-10 production, while inhibiting IL-12 production. In turn, IL-10 triggers secretion of TGFβ which downmodulates NKG2D expression on NK cells, leading to their impaired effector functions. Moreover, culture supernatants of HCV JFH1 replicating Huh-7.5.1 cells reproduce the effect of recombinant NS5A on NKG2D downmodulation. Exogenous IL-15 can antagonize the TGFβ effect and restore normal NKG2D expression on NK cells. We conclude that NKG2D-dependent NK cell functions are modulated during chronic HCV infection, and demonstrate that this alteration can be prevented by exogenous IL-15, which could represent a meaningful adjuvant for therapeutic intervention

    Mucosal-Associated Invariant T Cell Interactions with Commensal and Pathogenic Bacteria: Potential Role in Antimicrobial Immunity in the Child

    No full text
    Mucosal-associated invariant T (MAIT) cells are unconventional CD3+CD161high T lymphocytes that recognize vitamin B2 (riboflavin) biosynthesis precursor derivatives presented by the MHC-I related protein, MR1. In humans, their T cell receptor is composed of a Vα7.2-Jα33/20/12 chain, combined with a restricted set of Vβ chains. MAIT cells are very abundant in the liver (up to 40% of resident T cells) and in mucosal tissues, such as the lung and gut. In adult peripheral blood, they represent up to 10% of circulating T cells, whereas they are very few in cord blood. This large number of MAIT cells in the adult likely results from their gradual expansion with age following repeated encounters with riboflavin-producing microbes. Upon recognition of MR1 ligands, MAIT cells have the capacity to rapidly eliminate bacterially infected cells through the production of inflammatory cytokines (IFNγ, TNFα, and IL-17) and cytotoxic effector molecules (perforin and granzyme B). Thus, MAIT cells may play a crucial role in antimicrobial defense, in particular at mucosal sites. In addition, MAIT cells have been implicated in diseases of non-microbial etiology, including autoimmunity and other inflammatory diseases. Although their participation in various clinical settings has received increased attention in adults, data in children are scarce. Due to their innate-like characteristics, MAIT cells might be particularly important to control microbial infections in the young age, when long-term protective adaptive immunity is not fully developed. Herein, we review the data showing how MAIT cells may control microbial infections and how they discriminate pathogens from commensals, with a focus on models relevant for childhood infections

    Mécanismes d'échappement à la réponse immune innée de l'hôte au cours de l'infection chronique par le virus de l'hépatite C (VHC)

    No full text
    Comprendre comment le VHC enraye l'immunité innée de l'hôte est d'une grande importance dans l'espoir de développer des thérapies efficaces. Nous montrons ici, qu'après la stimulation du TLR4 par la protéine NS5A du VHC, les monocytes sécrètent de fort taux de TGFb qui downrégulent l'expression membranaire du récepteur NKG2D à la surface des NK et altèrent leurs fonctions effectrices médiées par NKG2D. L'interaction NS5A/TLR4 induit un déséquilibre inflammatoire puisqu'elle déclenche via les molécules de signalisation P38 MAPK et Pi3K, une forte se crétion d'IL-10, qui induit ultérieurement la production de TGF-b et l'inhibition du relargage d'IL-12. L'utilisation du système de culture de cellules Huh7.5.1 répliquant la souche JFH1 du VHC a permis de mettre en évidence le relargage de NS5A par les cellules infectées en apoptose. Enfin, l'apport exogène d'IL-15 peut restaurer l'expression de NKG2D à des niveaux normaux et induire une reprogrammation fonctionnelle des cellules NK.Understanding how hepatitis C virus (HCV) induces and circumvents innate and adaptive immunity of the host is of critical importance in efforts to design effective therapeutics. We report here the decreased expression of the NKG2D activating receptor as a novel strategy adopted by HCV to evade NK-cell mediated responses. We show that, upon TLR4 stimulation by the HCV NS5A protein, monocytes secrete high amounts of TGFb that downmodulates NKG2D expression on NK cells, leading to their impaired lytic potential and IFNy production. Using the JFH1-replicating Huh7.5.1 cell system, we provide evidence that NS5A released from apoptotic infected cells binds to monocytes. NS5A-induced signaling through TLR4 elicits p38- and PI3 kinase-dependent IL-10 production, which in turn triggers TGFb release while inhibiting IL-12 production. Exogenous IL-15 can rescue NKG2D expression at normal levels and induce functional reprogramming of NK cells.PARIS5-BU Méd.Cochin (751142101) / SudocSudocFranceF

    Control of NK Cell Activation by Immune Checkpoint Molecules

    No full text
    The development of cancer and chronic infections is facilitated by many subversion mechanisms, among which enhanced expression of immune checkpoints molecules, such as programmed death-1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), on exhausted T cells. Recently, immune checkpoint inhibitors have shown remarkable efficiency in the treatment of a number of cancers. However, expression of immune checkpoints on natural killer (NK) cells and its functional consequences on NK cell effector functions are much less explored. In this review, we focus on the current knowledge on expression of various immune checkpoints in NK cells, how it can alter NK cell-mediated cytotoxicity and cytokine production. Dissecting the role of these inhibitory mechanisms in NK cells is critical for the full understanding of the mode of action of immunotherapies using checkpoint inhibitors in the treatment of cancers and chronic infections
    corecore