93 research outputs found

    Q-band 4-state phase shifter in planar technology: Circuit design and performance analysis

    Get PDF
    A 30% bandwidth phase shifter with four phase states is designed to be integrated in a radio astronomy receiver. The circuit has two 90° out-of-phase microwave phase-shifting branches which are combined by Wilkinson power dividers. Each branch is composed of a 180° phase shifter and a band-pass filter. The 180° phase shifter is made of cascaded hybrid rings with microwave PIN diodes as switching devices. The 90° phase shift is achieved with the two band-pass filters. Experimental characterization has shown significant results, with average phase shift values of -90.7°, -181.7°, and 88.5° within the operation band, 35–47 GHz, and mean insertion loss of 7.4 dB. The performance of its integration in a polarimetric receiver for radio astronomy is analyzed, which validates the use of the presented phase shifter in such type of receiver.This work was supported by the Ministerio de Economía y Competitividad, Spain, under the CONSOLIDER-INGENIO 2010 programme under the Reference No. CSD2010-00064

    A new experimental approach to the study of beauty

    Get PDF
    Theories of beauty perception have tilting between the importance of the golden section, and the importance of cultural and learning factors on perception of beauty. The contradiction between those approaches may be solved by taking in account the real golden proportion rather than the ideal golden proportion. A new framework to conduct new and more comprehensive experimental approaches to the study of beauty is proposed

    The QUIJOTE experiment: project overview and first results

    Full text link
    QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.Comment: To appear in "Highlights of Spanish Astrophysics VIII", Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society, Teruel, Spain (2014

    Population Health Solutions for Assessing Cognitive Impairment in Geriatric Patients.

    Get PDF
    In December 2017, the National Academy of Neuropsychology convened an interorganizational Summit on Population Health Solutions for Assessing Cognitive Impairment in Geriatric Patients in Denver, Colorado. The Summit brought together representatives of a broad range of stakeholders invested in the care of older adults to focus on the topic of cognitive health and aging. Summit participants speciïŹcally examined questions of who should be screened for cognitive impairment and how they should be screened in medical settings. This is important in the context of an acute illness given that the presence of cognitive impairment can have signiïŹcant implications for care and for the management of concomitant diseases as well as pose a major risk factor for dementia. Participants arrived at general principles to guide future screening approaches in medical populations and identiïŹed knowledge gaps to direct future research. Key learning points of the summit included: recognizing the importance of educating patients and healthcare providers about the value of assessing current and baseline cognition;emphasizing that any screening tool must be appropriately normalized and validated in the population in which it is used to obtain accurate information, including considerations of language, cultural factors, and education; andrecognizing the great potential, with appropriate caveats, of electronic health records to augment cognitive screening and tracking of changes in cognitive health over time

    The QUIJOTE TGI

    Get PDF
    The QUIJOTE TGI instrument is currently being assembled and tested at the IAC in Spain. The TGI is a 31 pixel 26-36 GHz polarimeter array designed to be mounted at the focus of the second QUIJOTE telescope. This follows a first telescope and multi-frequency instrument that have now been observing almost 2 years. The polarimeter design is based on the QUIET polarimeter scheme but with the addition of an extra 90Âș phase switch which allows for quasiinstantaneous complete QUI measurements through each detector. The advantage of this is a reduction in the systematics associated with differencing two independent radiometer channels. The polarimeters are split into a cold front end and a warm back end. The back end is a highly integrated design by engineers at DICOM. It is also sufficiently modular for testing purposes. In this presentation the high quality wide band components used in the optical design (also designed in DICOM) are presented as well as the novel cryogenic modular design. Each polarimeter chain is accessible individually and can be removed from the cryostat and replaced without having to move the remaining pixels. The optical components work over the complete Ka band showing excellent performance. Results from the sub unit measurements are presented and also a description of the novel calibration technique that allows for bandpass measurement and polar alignment. Terrestrial Calibration for this instrument is very important and will be carried out at three points in the commissioning phase: in the laboratory, at the telescope site and finally a reduce set of calibrations will be carried out on the telescope before measurements of extraterrestrial sources begin. The telescope pointing model is known to be more precise than the expected calibration precision so no further significant error will be added through the telescope optics. The integrated back-end components are presented showing the overall arrangement for mounting on the cryostat. Many of the microwave circuits are in-house designs with performances that go beyond commercially available products. Individual component performance is be presented showing for each of the sub modules

    QUIJOTE-CMB experiment: a technical overview

    Get PDF
    The QUIJOTE-CMB experiment (Q-U-I JOint TEnerife CMB experiment) is an ambitious project to obtain polarization measurements of the sky microwave emission in the 10 to 47 GHz range. With this aim, a pair of 2,5m telescopes and three instruments are being sited at the Teide Observatory, in Tenerife (Canary Islands, Spain). The first telescope and the first instrument (the MFI: Multi Frequency Instrument) are both already operating in the band from 10 to 20 GHz, since November 2012. The second telescope and the second instrument (TGI: Thirty GHz instrument) is planned to be in commissioning by the end of summer 2014, covering the range of 26 to 36 GHz. After that, a third instrument named FGI (Forty GHz instrument) will be designed and manufactured to complete the sky survey in the frequency range from 37 to 47 GHz. In this paper we present an overview of the whole project current status, from the technical point of view

    The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions

    Get PDF
    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.The QUIJOTE-CMB experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support is provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2010-21766-C03 (01, 02 and 03), and also by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation49)

    The QUIJOTE experiment: project status and first scientific results

    Get PDF
    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a new polarimeter with the aim of characterizing the polarization of the Cosmic Microwave Background, and other galactic or extra-galactic physical processes that emit in microwaves in the frequency range 10–42 GHz, and at large angular scales (around 1 degree resolution). The experiment has been designed to reach the required sensitivity to detect a primordial gravitational wave component in the CMB, provided its tensor-to-scalar ratio is larger than r ∌ 0.05. The project consists of two telescopes and three instruments which will survey a large sky area from the Teide Observatory to provide I, Q and U maps of high sensitivity. The first QUIJOTE instrument, known as Multi-Frequency Instrument (MFI), has been surveying the northern sky in four individual frequencies between 10 and 20 GHz since November 2012, providing data with an average sensitivity of 80 ”K beam−1 in Q and U in a region of 20, 000 square-degrees. The second instrument, or Thirty-GHz Instrument (TGI), is currently undergoing the commissioning phase, and the third instrument, or Forty-GHz Instrument (FGI), is in the final fabrication phase. Finally, we describe the first scientific results obtained with the MFI. Some specific regions, mainly along the Galactic plane, have been surveyed to a deeper depth, reaching sensitivities of around 40 ”K beam−1. We present new upper limits on the polarization of the anomalous dust emission, resulting from these data, in the Perseus molecular complex and in the W43 molecular complex
    • 

    corecore