63 research outputs found

    Concentrated suspensions of Brownian beads in water: dynamic heterogeneities trough a simple experimental technique

    Full text link
    Concentrated suspensions of Brownian hard-spheres in water are an epitome for understanding the glassy dynamics of both soft materials and supercooled molecular liquids. From an experimental point of view, such systems are especially suited to perform particle tracking easily, and, therefore, are a benchmark for novel optical techniques, applicable when primary particles cannot be resolved. Differential Variance Analysis (DVA) is one such novel technique that simplifies significantly the characterization of structural relaxation processes of soft glassy materials, since it is directly applicable to digital image sequences of the sample. DVA succeeds in monitoring not only the average dynamics, but also its spatio-temporal fluctuations, known as dynamic heterogeneities. In this work, we study the dynamics of dense suspensions of Brownian beads in water, imaged through digital video-microscopy, by using both DVA and single-particle tracking. We focus on two commonly used signatures of dynamic heterogeneities: the dynamic susceptibility, χ4\chi_4, and the non-Gaussian parameter, α2\alpha_2. By direct comparison of these two quantities, we are able to highlight similarities and differences. We do confirm that χ4\chi_4 and α2\alpha_2 provide qualitatively similar information, but we find quantitative discrepancies in the scalings of characteristic time and length scale on approaching the glass transition.Comment: The original publication is available at http://www.scichina.com and http://www.springerlink.com http://engine.scichina.com/publisher/scp/journal/SCPMA/doi/10.1007/s11433-019-9401-x?slug=abstrac

    Differential Variance Analysis: A direct method to quantify and visualize dynamic heterogeneities

    Get PDF
    Many amorphous materials show spatially heterogenous dynamics, as different regions of the same system relax at different rates. Such a signature, known as Dynamic Heterogeneity, has been crucial to understand the nature of the jamming transition in simple model systems and is currently considered very promising to characterize more complex fluids of industrial and biological relevance. Unfortunately, measurements of dynamic heterogeneities typically require sophisticated experimental set-ups and are performed by few specialized groups. It is now possible to quantitatively characterize the relaxation process and the emergence of dynamic heterogeneities using a straightforward method, here validated on video microscopy data of hard-sphere colloidal glasses. We call this method Differential Variance Analysis (DVA), since it focuses on the variance of the differential frames, obtained subtracting images at different time-lags. Moreover, direct visualization of dynamic heterogeneities naturally appears in the differential frames, when the time-lag is set to the one corresponding to the maximum dynamic susceptibility. This approach opens the way to effectively characterize and tailor a wide variety of soft materials, from complex formulated products to biological tissues

    Microstructure and yielding of microfiber gels

    Get PDF
    Large aspect ratio cellulose nanofibers are able to a form poroelastic network at low volume fractions via aggregation and entanglement, forming a gel without significantly modifying viscosity[1]. The gels have a small but useful yield stress and a better ability to suspend particles than non-interacting higher volume fraction glasses[2] because the sparse fiber networks can significantly restructure at small strains. Yielding behavior can thus strongly depend on the fluid microstructure[3]. We study here deformation and yielding of aqueous cellulose fiber gels. Confocal imaging shows how gel yield stress relates to structural deformation rate because of localized network restructuring. Such response is advantageous to applications like surface coatings, nasal sprays, cosmetics, and foods. Understanding the mechanism of rate- and length-scale dependent yielding, and relating microstructure changes to bulk rheology[4], will enhance our ability to formulate, model, and design complex fluids with novel performance. References [1] - Solomon MJ, Spicer PT. Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter, 6, 1391 (2010). [2] - Emady H, Caggioni M, Spicer P. Colloidal microstructure effects on particle sedimentation in yield stress fluids. J Rheol. 57, 1761 (2013). [3] - Joshi YM. Dynamics of colloidal glasses and gels. Annu Rev Chem Biomol Eng. 5, 181, (2014). [4] - Hsiao L, Newman RS, Glotzer SC, Solomon MJ. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proc Natl Acad Sci, 109, 16029, (2012

    Interaction with smart assistants using alternative and augmentative communication

    Get PDF
    Smart assistants utilize speech recognition, sensing, artificial intelligence, and networking technologies to enable improved human-machine interaction. However, there remain use cases where smart assistants are not easily usable by humans. For example, voice-activated assistants are not accessible to those that are hearing or speech impaired. Touchscreen based assistants are not usable by those who lack fine motor skills and/or reading ability. This disclosure adds to the modalities by which humans can control and communicate with smart assistants by enabling use of physical objects, facial expressions, gross motor skills, body movements, etc. to provide commands. Collectively, these techniques of control and communication are referred to as alternative and augmentative communication (AAC)

    Pretransitional behavior in a water-DDAB-5CB microemulsion close to the demixing transition. Evidence for intermicellar attraction mediated by paranematic fluctuations

    Full text link
    We present a study of a water-in-oil microemulsion in which surfactant coated water nanodroplets are dispersed in the isotropic phase of the thermotropic liquid crystal 5CB. As the temperature is lowered below the isotropic to nematic phase transition of pure 5CB, the system displays a demixing transition leading to a coexistence of a droplet rich isotropic phase with a droplet poor nematic. The transition is anticipated, in the high T side, by increasing pretransitional fluctuations in 5CB molecular orientation and in the nanodroplet concentration. The observed phase behavior supports the notion that the nanosized droplets, while large enough for their statistical behavior to be probed via light scattering, are also small enough to act as impurities, disturbing the local orientational ordering of the liquid crystal and thus experiencing pretransitional attractive interaction mediated by paranematic fluctuations. The pretransitional behavior, together with the topology of the phase diagram, can be understood on the basis of a diluted Lebwohl-Lasher model which describes the nanodroplets simply as holes in the liquid crystal.Comment: 64 pages, 16 figures, J. Chem. Phys. in pres

    Colloidal fibers as structurant for worm-like micellar solutions

    Get PDF
    We investigate the rheological properties of a simplified version of a liquid detergent composed of an aqueous solution of the linear alkylbenzene sulphonate (LAS) surfactant, in which a small amount of fibers made of hydrogenated castor oil (HCO) is dispersed. At the concentration typically used in detergents, LAS is in a worm-like micellar phase exhibiting a Maxwellian behavior. The presence of HCO fibers provides elastic properties, such that the system behaves as a simple Zener body, mechanically characterized by a parallel connection of a spring and a Maxwell element. Despite this apparent independence of the contributions of the fibers and the surfactant medium to the mechanical characteristics of the system, we find that the low frequency modulus increases with increasing LAS concentration. This indicates that LAS induces attractive interactions among the HCO fibers, resulting in the formation of a stress-bearing structure that withstands shear at HCO concentrations, where the HCO fibers in the absence of attractive interactions would not sufficiently overlap to provide stress-bearing properties to the system

    Bacterial Cellulose-Carboxymethyl Cellulose (BC:CMC) dry formulation as stabilizer and texturizing agent for surfactant-free cosmetic formulations

    Get PDF
    Generic cosmetic creams (oil-in-water emulsions) were prepared using dry Bacterial Cellulose and Carboxymethyl Cellulose (BC:CMC) to study the possibility of partially or completely replacing surfactants, while ensuring a long-term stability and the required organoleptic characteristics. BC:CMC was benchmarked against two hydrocolloidal Avicel products (PC-591 and PC-611), commonly used as thickeners and stabilizing aids in cosmetics production. The emulsions were then characterized regarding storage stability, rheology, texture and microscopic features. The full replacement of 5.5% surfactants with only 0.75% BC:CMC consistently showed similar results to those obtained with surfactants, namely concerning viscosity and texture. Although producing emulsions with larger oil droplets, BC:CMC provided for a very effective stabilization through a Pickering effect and by structuring the continuous phase. The more effective Avicel tested (PC-591) required a higher concentration (1.5 %) to achieve similar rheological profile but was ineffective in stabilizing the oil phase in a surfactant-free formulation with the adopted protocol. By replacing surfactants, dry BC:CMC matches a strong market need since both end users and manufacturers increasingly seek natural ingredients for cosmetic formulations.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/ 04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER 000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Daniela Martins also gratefully acknowledges FCT for the PhD scholarship, reference SFRH/BD/115917/2016.info:eu-repo/semantics/publishedVersio

    Modified Gellan Gum hydrogels with tunable physical and mechanical properties

    Get PDF
    Gellan Gum (GG) has been recently proposed for tissue engineering applications. GG hydrogels are produced by physical crosslinking methods induced by temperature variation or by the presence of divalent cations. However, physical crosslinking methods may yield hydrogels that become weaker in physiological conditions due to the exchange of divalent cations by monovalent ones. Hence, this work presents a new class of GG hydrogels crosslinkable by both physical and chemical mechanisms. Methacrylate groups were incorporated in the GG chain, leading to the production of a methacrylated Gellan Gum (MeGG) hydrogel with highly tunable physical and mechanical properties. The chemical modification was confirmed by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR-ATR). The mechanical properties of the developed hydrogel networks, with Young's modulus values between 0.15 and 148 kPa, showed to be tuned by the different crosslinking mechanisms used. The in vitro swelling kinetics and hydrolytic degradation rate were dependent on the crosslinking mechanisms used to form the hydrogels. Three-dimensional (3D) encapsulation of NIH-3T3 fibroblast cells in MeGG networks demonstrated in vitro biocompatibility confirmed by high cell survival. Given the highly tunable mechanical and degradation properties of MeGG, it may be applicable for a wide range of tissue engineering approaches.This research was funded by the US Army Engineer Research and Development Center, the Institute for Soldier Nanotechnology, the NIH (HL092836, DE019024, EB007249), and the National Science Foundation CAREER award (AK). This work was partially supported by FCT, through funds from the POCTI and/or FEDER programs and from the European Union under the project NoE EXPERTISSUES (NMP3-CT-2004-500283). DFC acknowledges the Foundation for Science and Technology (FCT), Portugal and the MIT-Portugal Program for personal grant SFRH/BD/37156/2007. HS was supported by a Samsung Scholarship. SS acknowledges the postdoctoral fellowship awarded by Fonds de Recherche sur la Nature et les Technologies (FQRNT), Quebec, Canada. We would like to thank Dr. Che Hutson for scientific discussions

    ‘Alexa, Call My SLP’: Using Smart Tech to Boost AAC

    No full text
    • …
    corecore