533 research outputs found

    Phase Stabilization of a Frequency Comb using Multipulse Quantum Interferometry

    Get PDF
    From the interaction between a frequency comb and an atomic qubit, we derive quantum protocols for the determination of the carrier-envelope offset phase, using the qubit coherence as a reference, and without the need of frequency doubling or an octave spanning comb. Compared with a trivial interference protocol, the multipulse protocol results in a polynomial enhancement of the sensitivity O(N^{-2}) with the number N of laser pulses involved. We present specializations of the protocols using optical or hyperfine qubits, Lambda-schemes and Raman transitions, and introduce methods where the reference is another phase-stable cw-laser or frequency comb

    La Musicoterapia, una vía de expresión global

    Get PDF
    Musictherapy has lately emerged as a tool for effective intervention in the prevention and rehabilitation in a variety of pathologies, helping to maintain or improve psycho-emotional, social and physical functions of individuals. This article explains how an intervention is articulated in Music Therapy from knowledge about the effects of music on human beings and how these come in a comprehensive manner to all areas of the person and properly using different techniques based music therapy listening and musical improvisation, we can influence the well being of our patients or clients.La Musicoterapia se ha revelado últimamente como una herramienta de intervención efectiva en la prevención y rehabilitación de patologías muy diversas, ayudando a mantener o mejorar las funciones físicas, psico-emocionales y sociales de las personas. En este articulo explicamos cómo se articula una intervención en Musicoterapia partiendo del conocimiento de los efectos de la música en el ser humano y cómo estos llegan de una manera global a todas las áreas de la persona y utilizando adecuadamente las diferentes técnicas de musicoterapia basadas en la escucha y la improvisación musical, podemos influir en el bien estar de nuestros pacientes o cliente

    Adaptive Navigation, Guidance and Control Techniques Applied to Ballistic Projectiles and Rockets

    Get PDF
    Accuracy and precision are the cornerstone for ballistic projectiles from the earliest days of this discipline. In the beginnings, impact point precision in artillery devices deteriorated when range were extended, particularly for non-propelled artillery rockets and shells. Later, inertial navigation and guidance systems are introduced and precision was unlinked from range increases. In the last 30 years, hybridization between inertial systems and GNSS devices has improved precision enormously. Unfortunately, during the last stages of flight, inertial and GNSS methods (hybridized or not) feature big errors on attitude and position determination. Low cost devices, which are precise on terminal guidance and do not feature accumulative error, such as quadrant photo-detector, seem to be appropriate to be included on the guidance systems. Hybrid algorithms, which combine GNSSs, IMUs and photodetectors, and a novel technic of attitude determination, which avoids the use of gyroscopes, are presented in this chapter. Hybridized measurements are implemented on modified proportional navigation law and a rotatory force control method. A realistic non-linear flight dynamics model has been developed to perform simulations to prove the accuracy of the presented algorithms

    Entanglement, fractional magnetization and long-range interactions

    Get PDF
    Based on the theory of Matrix Product States, we give precise statements and complete analytical proofs of the following claim: a large fractionalization in the magnetization or the need of long-range interactions imply large entanglement in the state of a quantum spin chain.Comment: 11 pages, 1 figur

    Emergent Causality and the N-photon Scattering Matrix in Waveguide QED

    Get PDF
    In this work we discuss the emergence of approximate causality in a general setup from waveguide QED -i.e. a one-dimensional propagating field interacting with a scatterer. We prove that this emergent causality translates into a structure for the N-photon scattering matrix. Our work builds on the derivation of a Lieb-Robinson-type bound for continuous models and for all coupling strengths, as well as on several intermediate results, of which we highlight (i) the asymptotic independence of space-like separated wave packets, (ii) the proper definition of input and output scattering states, and (iii) the characterization of the ground state and correlations in the model. We illustrate our formal results by analyzing the two-photon scattering from a quantum impurity in the ultrastrong coupling regime, verifying the cluster decomposition and ground-state nature. Besides, we generalize the cluster decomposition if inelastic or Raman scattering occurs, finding the structure of the S-matrix in momentum space for linear dispersion relations. In this case, we compute the decay of the fluorescence (photon-photon correlations) caused by this S-matrix

    Improved rapid transit network design model: considering transfer effects

    Get PDF
    The rail rapid transit network design problem aims at locating train alignments and stations, maximizing demand coverage while competing with the current existing networks. We present a model formulation for computing tight bounds of the linear relaxation of the problem where transfers are also introduced. The number of transfers within a trip is a decisive attribute for attracting passengers: transferring is annoying and undesirable for passengers. We conduct computational experiments on different networks and show how we are able to solve more efficiently problems that have been already solved; sensitivity analysis on several model parameters are also performed so as to demonstrate the robustness of the new formulation

    Improved rapid transit network design model: considering transfer effects

    Get PDF
    The rail rapid transit network design problem aims at locating train alignments and stations, maximizing demand coverage while competing with the current existing networks. We present a model formulation for computing tight bounds of the linear relaxation of the problem where transfers are also introduced. The number of transfers within a trip is a decisive attribute for attracting passengers: transferring is annoying and undesirable for passengers. We conduct computational experiments on different networks and show how we are able to solve more efficiently problems that have been already solved; sensitivity analysis on several model parameters are also performed so as to demonstrate the robustness of the new formulation
    • …
    corecore