From the interaction between a frequency comb and an atomic qubit, we derive
quantum protocols for the determination of the carrier-envelope offset phase,
using the qubit coherence as a reference, and without the need of frequency
doubling or an octave spanning comb. Compared with a trivial interference
protocol, the multipulse protocol results in a polynomial enhancement of the
sensitivity O(N^{-2}) with the number N of laser pulses involved. We present
specializations of the protocols using optical or hyperfine qubits,
Lambda-schemes and Raman transitions, and introduce methods where the reference
is another phase-stable cw-laser or frequency comb