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Abstract
In thisworkwediscuss the emergenceof approximate causality in a general setup fromwaveguideQED—
i.e. a one-dimensional propagatingfield interactingwith a scatterer.Weprove that this emergent causality
translates into a structure for theN-photon scatteringmatrix.Ourworkbuilds on thederivationof aLieb–
Robinson-typebound for continuousmodels and for all coupling strengths, aswell as on several
intermediate results, ofwhichwehighlight: (i) the asymptotic independenceof space-like separatedwave
packets, (ii) theproperdefinitionof input andoutput scattering states, and (iii) the characterizationof the
ground state andcorrelations in themodel.We illustrate our formal results by analyzing the two-photon
scattering fromaquantumimpurity in theultrastrongcoupling regime, verifying the clusterdecomposition
andground-statenature. Besides,we generalize the cluster decomposition if inelastic orRaman scattering
occurs,finding the structureof the S-matrixinmomentumspace for linear dispersion relations. In this
case,we compute thedecayof thefluorescence (photon–photon correlations) causedby thisS-matrix.

1. Introduction

Causality is expected to hold in every circumstance. The causality principle states that two experiments which
are space-like separated, such that no signal traveling at the speed of light can connect them,must provide
uncorrelated results [1]. In quantumfield theory (QFT), strict causality imposes that two operators A x t,( ) and
B y t, ¢( ) acting on two space-like separated points (x, t) and y t, ¢( ),must commute,

A x t B y t x y c t t, , , 0 if 0, 1¢ = - - - ¢ >[ ( ) ( )] ∣ ∣ ∣ ∣ ( )

where c is the speed of light (we restrict ourselves to 1+ 1 dimensions). Another consequence of causality inQFT
appears in the study of scattering events or collisions: scatteringmatrices describing causally disconnected events
must ‘cluster’, or decompose into a product of independent scatteringmatrices [2]. In fact, all acceptableQFT
interactionsmust result in S-matrices fulfilling such a decomposition [3].

Nonrelativistic quantummechanics is an effective theorywhich allows signals topropagate arbitrarily fast, but
whichmaygive rise todifferent formsof emergent approximate causality. The typical examples are low-energymodels
in solid state,wherequasiparticle excitationshave amaximumgroupvelocity. In this case, there exists an approximate
light cone, outside ofwhich the correlationsbetweenoperators are exponentially suppressed.This emergent causality
was rigorously demonstratedbyLieb andRobinson [4] for spin-models on latticeswithbounded interactions that
decay rapidlywith thedistance. Lieb–Robinsonboundsnotonly imply causality in the information-theoretical sense
[5], but lead to important results in the static properties ofmany-bodyHamiltonians, such as the clusteringof
correlations, locality in thedynamics of lattices of harmonic oscillators, and the area law ingappedmodels [6–8].

In this workwe demonstrate the existence and explore the consequences of emergent causality in the
nonrelativistic framework of waveguideQED [9–13]. Theses systems consist of photons propagating in low-
dimensional environments—waveguides, photonic crystals, etc—interactingwith local quantum systems. Such
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models do not satisfy Lorentz or translational invariance, they are typically dispersive, and the photon-matter
interactionmay become highly non-perturbative. Experimental implementations include dielectrics [14, 15],
cavity arrays [16],metals [17], diamond structures [18, 19], and superconductors [20–24] interactingwith
atoms,molecules, quantumdots, color centers in diamond or superconducting qubits. The focus of waveguide
QED is set on quantumprocesses involving fewphotons and scatterers. In this regard, it is not surprising that
there exists an extensive theoretical literature forwaveguide-QED systems [13], which develops a variety of
analytical and numericalmethods for the study of theN-photon S-matrix[25–36].

Themain result in this work is the structure of theN-photon S-matrixinwaveguideQED, rigorously
deduced from emergent causality constraints. Our result builds on a generalmodel of light–matter interactions,
without any approximations such as the rotating-wave approximation (RWA), theMarkovian limit, or weak
light–matter coupling. To derive the S-matrixdecompositionwe are assisted by several intermediate and
important results, of whichwe remark: (i) the freedomofwave packets far away from the scatterer, (ii) Lieb–
Robinson-like independence relations and approximate light-cones for propagating wave packets, (iii) a
characterization of the ground state correlation properties, and (iv) a proper definition and derivation of
scattering input and output states.

We illustrate our results with two representative examples. The first one is a numerical study of scattering in
the ultrastrong coupling limit [35, 37], wherewe demonstrate the clustering decomposition and the nature of
the ground state predicted by our intermediate results. The second is an analytical study of a non-dispersive
medium interactingwith a general scatterer, which admits exact calculations. Here, we find the shape of the
S-matrixfrom general principles, including the inelastic processes.We recover the nontrivial form computed by
Xu and Fan for a particular case in [38] andfind the generalization of the standard cluster decomposition to the
waveguide-QEDmodel given by equation (2), with several ground states.

The paper has the following organization. Section 2 presents the nonrelativisticHamiltonian thatmodels the
interaction between propagating photons and quantum impurities, the concept of wave packet, a review of the
scattering theory needed, and two conditions necessary for the validity of our results. Section 3 summarizes our
formal theory arriving to the generalN-photon scattering compatible with causality. Section 4 presents the
examples applying the theory.We close this workwith further comments and outlooks. Intermediate lemmas,
theorems, and technical issues are discussed in the appendices.

2.Model and scattering theory

2.1.WaveguideQEDmodel
The simplestmodel that describes a waveguide-QED setup consists of a one-dimensional bosonicmedium and a
scatterer. Using units such that 1 = , it reads

H H H g G a g Ga kd . 2k k k k0 sc *ò= + + +( ) ( )† †

Thefirst term stands for the free-Hamiltonian of the photons

H a a kd , 3k k k0 ò w= ( )†

with frequency kw formomentum k, which is created (annihilated) by the corresponding Fock operator ak (ak
†),

satisfying a a k k,k k
d= - ¢¢[ ] ( )† . The last two terms are theHamiltonian Hsc of thefinite-dimensional system,

which is the scatterer, and the dipolar interaction termdescribed by the bounded operatorsG and the coupling
strengths gk.We assume that the coupling strengths in position space

g k g
1

2
d e 4x

kx
k

iòp
= ( )

have afinite support centered around x 0sc = . Themodel (2) is not exactly solvable in general. For instance, if
the scatterer is a two-level system, H zsc sµ and G xs= themodel is the celebrated spin-bosonmodel [39],
which results in a nontrivial ground state with localized photonic excitations around the scatterer.

The discussion below assumes a single photonic band ,k min maxw w wÎ [ ]and typically a chiralmedium
k 0 , 0k k w¶ . This is a rather standard simplificationwhich does not affect the generality and applicability of
our results.We generalize our results to nonchiralmedia in appendix E. The structure for S0 is essentially
identical in that case, so the conclusions of the paper also hold for nonchiralmedia. Anyway, chiral waveguides
can be realized experimentally, for instancewith photonic crystals [40, 41], or nanofibers coupled to
nanoparticles or atoms [14, 42]. Besides, we can considermore generic dispersion relations by introducing
additional degrees of freedom in the photons (band index, etc) and keeping track of those quantumnumbers in a
trivial extension of our results.

2

New J. Phys. 20 (2018) 013017 E Sánchez-Burillo et al



Ourmodel is lossless. Losses are negligible in several experimental platforms, such as superconducting
transmission lines interacting with superconducting qubits [21, 22]. Besides, the one-dimensional
approximation is valid for all the implementations considered in the references we included above.

2.2. Localizedwave packets
In order to talk about causality, we introduce a set of localizedwave packets towhich an approximate position
can be ascribed. Aswewill see below, approximate localization becomes essential in the discussion, allowing us
to discuss the order inwhich photons interact with the scatterer.

Let us introduce the creation operator tkxy ( )¯ ¯
† for awave packet as

t t k a ke d . 5kx
kx t t

k k0
i i k 0òy f- = w- -( ) ( ) ( )¯ ¯

† ¯ ( ) ¯
†

Thewavefunction p p kk
2f f= - Î( ) ( ¯)¯ is normalized and centered around the averagemomentum k̄ . The

exponential factor e kxi ¯ ensures thewave packet is centered around x̄ in position space at time t t0= .
Aswave packets wewill use bothGaussian

k k k
1

2
exp 4 , 6k

2 2
4

f
p s

s= - -( ) [ ( ¯) ] ( )¯

and Lorentzian envelopes

k
k k

1

i
. 7kf

s
p s

=
- +

( ) ¯ ( )¯

Thesewave functions are only approximately localized in the sense that the probability offinding a photon
decays exponentially far away from the center x̄. Thewidthσ inmomentum space implies a localization length
1 s in position space.

Figure 1 illustrates the collision of two approximately localizedwave packets against a quantum impurity in a
chiralmedium. The averagemomentumof thewave packets k1̄ or k2̄ determines the group velocity at which the
photonsmove v kg k kw= ¶( ) . Thewave packetsmay be distorted due both to the dispersive nature of the
medium and the interactionwith the scatterer.

2.3. Scattering operator
In the typical scattering geometry, the interaction occurs in afinite region. Besides, it is assumed that
asymptotically far away from that region thefield is a linear combination of free-particle states (generated via
creation operators on the non-interacting vacuum) even in the presence of the scatterer-waveguide interaction.

A sufficient condition for this is that both the ground state and any non-propagating excited state accessible
by scattering W ñm∣ are indistinguishable from the vacuum state vacñ∣ far away from the scatterer.Mathematically
this occurs when

Figure 1.Two incoming photonswith averagemomenta k1̄ (red) and k2̄ (green), initially centered around distant points x1̄ and x2̄

l  ¥( ), scatter against a general quantumobject. The scatterer-field can have several bound states (localized and not propagating).
In thefigure, the scatterer-field is in one of those bound states W ñn∣ (gray region). If thefirst incoming photon leaves the scattering
region in another localized eigenstate W ñl∣ the second photonmeets the interaction region in a different state, found by thefirst wave
packet. If this occurs (seemain text) the scatteringmatrix cannot be just a product, itmust differentiate the order inwhich both events
happen.
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O x O xlim , vac , vac , 8
x

áW D W ñ = á D ñm m
¥

∣ ( ¯ )∣ ∣ ( ¯ )∣ ( )
¯

where O x, D( ¯ ) is an operatorwith compact support in thefinite interval x x x2 2- D < < + D¯ ¯ and the
vacuum state vacñ∣ is such that a vac 0k ñ =∣ k" .

Besides, the free particle statesmust satisfy the asymptotic condition [43]:

U t U t 0, 9
t

0
in outYñ - Y ñ

 ¥
 


( )∣ ( )∣ ⟶ ( )

withU(t) the evolution operator of the full Hamiltonian (2) andU t e H t0 i 0= -( ) the free-evolution operator.
The scattering operator S relates the amplitude of the output and inputfields through

S , 10out inY ñ = Y ñ∣ ∣ ( )

which, using (9), has the formal expression:

S U t tlim , . 11
t

I=
¥

+ -


( ) ( )

Here,U t t, e e eI
H t H t t H ti i i0 0=+ -

- - -- + - +( ) ( ) is the evolution operator in the interaction picture. Using again
equation (9) leads to U t U t t Iin out 0Y ñ = Yñ º Y ñ- + - + - +∣ ( ) ( )∣ ∣ ( )† , which shows that the input and output
fields are represented in the interaction picture.

Related quantities are the scattering amplitudes. For example, the single-photon amplitude is defined as:

A t S t 12out iny yº áW W ñm n+ -∣ ( ) ( ) ∣ ( )†

with t tkx
iny y=- -( ) ( )† ¯ ¯

† and an analogous definition for touty +( ) and the photonmean position x̄ beingwell
separated from the scatterer.

One of the goals of this work is tofind themost general form for the amplitudeA compatible with causality,
thus providing amore clear understanding of the structure of the scatteringmatrix.

2.4. Sufficient conditions for having awell-defined scattering theory
Given a generalHamiltonian (2), it is not generally knownwhether the condition (8) is satisfied. Thus, the
existence of scattering statesmust be assumed. In this work, we provide a further evidence of the validity of this
assumptions by demonstrating a limited version of equation (8) (see appendix A) for the unique ground state of
Hamiltonian (2), which reads

x x, 13
kx kx

n
0 0 y yáW W ñ  ¥-∣ ∣ (∣ ¯∣ ) ∣ ¯∣ ( )¯ ¯

† ¯ ¯

provided that: (i) for all k, gk kw < ¥∣ ∣ and (ii) that the correlators C a akp k p0 0= áW W ñ∣ ∣† are n-differentiable
functions.

Unfortunately, this result is insufficient for treating themost general case. It is well known that the
Hamiltonian (2)may support excited eigenstates which are localized around the scattering center
[34, 35, 44, 45], which in the literature are usually referred as ground states. Two paradigmatic examples of
scatterer withmultiple ground states are the three-levelΛ atom,with two electronic ground state, and a two-
level system coupled to a cavity array in the ultrastrong coupling regime [35].

However, we have been unable tofind a general proof that (8) is satisfied (and thus that input and output
states can be defined) for non propagating excited states that appear in these systems. In order tomake any
progress, and as usual in the literature, we have instead assumed a plausible first condition: theHamiltonian (2)
has a finite set of ground states, W ñm{∣ }, which are localized in the sense of equation (8). Notice that with this
assumption (2)has awell defined theory (see appendix B.3). This condition allows the expression of the elements
of S in themomentumbasis:

S a S a . 14
i

p
j

kpk i j = W Wmn m n( ) ∣ ∣ ( )†

In this paperwewill also assume a second condition: theN-photon scattering process conserves the number
offlying photons in the input and output states.We only provide results for the sector of the scatteringmatrix
that conserves the number of excitations, excluding us from considering other scattering channels, such as
downconversion processes. Notice, however, that a large number of systems fulfill this condition. For instance,
the unbiased spin-bosonmodel (where H zsc sµ and G xs= ) exactly conserves the number of excitations
within the RWA,which is validwhen the coupling strength ismuch smaller than the photon energy. But even in
the ultrastrong coupling regime, when counter-rotating terms are important, numerical simulations have
shown that the scattering process conserves the number offlying excitationswithin numerical uncertainties (see
[35, 37, 46] and section 4.1).
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3. Causality and theN-photon scatteringmatrix

3.1. Approximate causality
Weare describingwaveguideQEDusing nonrelativisticmodels for which strict causality (1) does not apply.
However, as a foundational result we have been able to prove that thewaveguide-QEDmodel (2) supports an
approximate formof causality. This form states that there exists an approximate light cone, defined by the
maximumgroup velocity, c max k kw= ¶( ). Twowave-packet operators which are outside their respective cones
and far away from the scatterer approximately commute.

To be precise, we define the distance d x y t t x y c t t,- - ¢ = - - - ¢( ) ∣ ¯ ¯∣ ∣ ∣and prove in appendix B that

t t
D D

,
1 1

, 15kx py n n
0

1
 y y ¢ = +

-
 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟[ ( ) ( ) ]

∣ ∣ ∣ ∣
( )¯ ¯ ¯ ¯

†

with D d x y t t,º - - ¢( ) and D d x t d x t d y t d y tmin , , , , , , ,0 0 0º { ( ¯ ) ( ¯ ) ( ¯ ) ( ¯ )} the distance between the
packets and theminimumdistance between them and the scatterer respectively. The power n stands becausewe
use that the dispersion relation is n-times differentiable. A sketch of the proof is as follows. First, we prove (15)
for free fields, i.e. for wave packetsmoving underH0. In theHeisenberg picture, the phases
k x y t ti i kw- - - ¢( ¯ ¯) ( ) can be bounded by the distance d x y t t,- - ¢( ). Using theRiemann–Lebesgue
lemma ( f k ke d 0kziò ( ) , as z  ¥)wefind the power law decay, D n-∣ ∣ . Causality is thereby linked to the
cancellation or averaging of fast oscillations in the unitary dynamics. Applying a similar technique to the
interaction term in (2) allows us to prove that packets away the influence of the scatterer evolve freely, producing
the second algebraic decay term D n

0
1-∣ ∣ . This leads the second decay D n

0
1-∣ ∣ . If their evolution can be

approximated by the evolution underH0, what we found for the commutator of free-evolving packets holds also
in the interacting part.

This result is analogous to Lieb–Robinson-type bounds that were initially developed for a lattice of locally
interacting spins [4], andwhichwere later generalized to finite-dimensionalmodels, (an)harmonic oscillators,
master equations, and spin-boson lattices [6, 7, 47–51]. It is important to remark that the approximate causality
in equation (15) is not obtained for the free theory, but for the fullwaveguide-QEDmodel. As a consequence, it
can be used to derive important results on the photon-scatterer interaction.

3.2. Causality and the scatteringmatrix
Causality imposes restrictions on the S-matrix[3], amongwhich is the cluster decomposition that we
summarize here. For now, let us consider the case of a unique ground state and split the S-matrixinto a free part
S0 and an interacting partT, both inmomentum space

S S Ti . 16pk pk pk
0= + ( )

The interacting partT accounts for processes inwhich two ormore photons coincide and interact
simultaneously with the scatterer. Causality is then invoked to argue that they cannot influence each other if the
input events are space-like separated. Thus,T does not contribute to the scattering amplitude as wave packets fall
apart x xi j-  ¥∣ ¯ ¯ ∣ . This, togetherwith energy conservation, imposes the constraint T C E Ei ipk pk p kd= -( )
[1]. In this limit the only term contributing to the scattering amplitude is the free part, S0. InQFT (typically)
occursmomentum conservationwhich implies that

S
N

S k k p p
1

permutations , , 17
n

N

p k n m n mpk
0

1
n n= + « «

=

⎛
⎝⎜

⎞
⎠⎟!

[ ] ( )

with Sp k p kn n n n
d w wµ -( ) the one-photon S-matrix. In order to clarify the notation k kpermutations ,n m«[

p pn m« ], let uswrite the two-photon Smatrix:

S S S S S S S S S S S S S
1

2
. 18p k p k p k p k p k p k p k p k p k p k p k p kpk

0
1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 2= + + + = +( ) ( )

This is nothing but the cluster decomposition. Fourier transforming Spk
0 , this structure also holds

S
N

S x x y y
1

permutations , . 19
n

y x n m n myx
0

1N
n n= + « «

=

⎛
⎝⎜

⎞
⎠⎟!

[ ] ( )

This shall be relevant in the following section, wherewewill work in position space.

3.3. Generalized cluster decomposition
Our goal is to explain how approximate causality (15) implies a cluster decomposition for the S-matrix.Wewill
also show that inwaveguideQED the photonmomenta need not be conserved and that S0may not have the
structure given by equation (17).
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Tounderstand how causality fixes the formof S0 we refer to ourfigure 1where twowell separatedwave
packets interact with a scatterer. The scattering amplitude is,

A t t .
m

p y
n

k x
1

2
out

1

2
in

m m n n
 y y= áW W ñm n
=

+
=

-∣ ( ) ( ) ∣¯ ¯ ¯ ¯
†

Note that for a sufficiently large separation of thewave packets, the output state of thefirst packetmust be
causally disconnected. This implies that the input operator for the first wave packetmust commutewith the
output operator for the second packet (see equation (15)). Notice that the second output and the first input will
not commute in general.We can then approximate, at any degree of accuracy, the above amplitude as,

A t t t t . 20p y k y p x k x
out in out in

2 2 2 2 1 1 1 1
y y y yáW W ñm n+ - + - ∣ ( ) ( ) ( ) ( ) ∣ ( )¯ ¯ ¯ ¯

†
¯ ¯ ¯ ¯

†

Let us know insert the identity between the operators t
k x
in

2 2
y -( )¯ ¯

† and tp y
out

1 1
y +( )¯ ¯ . Recalling the conditions discussed

in section 2.4, namely the localized nature for the ground states together with the fact that there is not particle
creation, just M

0
1W ñl l=

-{∣ } will contribute to the identity. The final result is:

A A A , 21
M

12
0

1

1, 2,å=
l

n l l m
=

-

  ( )

with A t tp y k x1,
out in

1 1 1 1
y y= áW W ñn l l n + -∣ ( ) ( ) ∣¯ ¯ ¯ ¯

† and similarly for A2,l m .We can generalize this expression toN
photons, with initial average positions x x x... N1 2> > >¯ ¯ ¯ and asymptotic ground states 0l n≔ and Nl m≔

A A , 22
M

n

N

n
, , 0

1

1
,

N

N n N n

1 1

1å =
l l

l l
¼ =

-

=


-

+ - - ( )

with

A t t . 23n p y k x,
out in

N n N n N n n n n n N n1 1y y= áW W ñl l l l + -+ - - - + -∣ ( ) ( ) ∣ ( )¯ ¯ ¯ ¯
†

The sketched constructive demonstration (a complete demonstration is given in appendix C) has confirmed that
causality imposes that the amplitude can be built from single photon events whenever those are well separated.
Inelastic processes yield the sumover intermediate states. If only one ground state is considered, the amplitude is
the product A An n= P . In this case, the S-matrixinmomentum space recovers the typical structure inQFT
(see equation (17)). However, when inelastic-scattering events occur, the sum in (22) leads to a particular
structure for the free part of the scatteringmatrix S0 that we discuss now.

Wenowfind the structure for S0 in position space compatible with the amplitude (22). For the sake of
simplicity, weworkwith chiral waveguides and amonotonously growing dispersion relation, 0k k w¶ .
Therefore, we can order the events using step functions, eliminating unphysical contributions (e.g. thewave
packet k x2 2

y ¯ ¯ arriving before than k x1 1
y ¯ ¯ , see figure 1). Some algebra, fully described in appendixD yields that S0 has

the following structure

S S y y x x y ypermutations , . 24
M

n

N

y x
m

N

m m n m n myx
0

... 0

1

1 1

1

1
N

n n N n N n

1 1

1å   q= - + « «mn
l l

l l
=

-

= =

-

+
-

+ - -( ) ( ) ( ) [ ] ( )

The sumover intermediate states and theHeaviside functions are a direct consequence of causality, since they
order the different wave packets and keep track of the state of the scatterer for each arrival. Nevertheless, if the
ground state is unique (M= 1), the step functions cancel out andwe recover the structure described by (19).
However, strikingly, for M 1> this S-matrixcannot bewritten as a product of one-photon scatteringmatrices,
up to permutations, due to theHeaviside functions. In order to shed light on this, it is convenient tomove to
momentum space. Although Spk

0
mn( ) cannot be analytically calculated for a general dispersion relation, a

mathematical expression can be found for a linear one. This calculationwill be presented in section 4.2. Thefinal
result is that Spk

0
mn( ) cannot bewritten as a product of one-photon S-matrices. This has been recently pointed out

in the particular example of aΛ atom coupled to awaveguide within the RWAandMarkovian approximations
with point-like coupling byXu and Fan [38] using the input–output formalism [27].

Aswe said in the introduction, the generalization to nonchiral waveguides is straightworward.We explain
the details in appendix E.

4. Applications

The set of previous theorems and conditions create a framework that describesmany useful problems and
experiments inwaveguideQED.We are now going to illustrate two particular problemswhich are amenable to
numerical and analytical treatment, andwhich highlight themain features of all the results.

Thefirst problem consists of a two-level system that is ultrastrongly coupled to a photonic crystal. The
scattering dynamics has to be computed numerically. The simulations fully conform to our our framework,
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showing the fast decay of photon-qubit dressingwith the distance, the independence of space-like separated
wave packets, and the decomposition of the two-photon scattering amplitude as a product (for the chosen
parameters, the one-photon scattering is elastic).

The second problem consists of a general scatterer with several ground states that is coupled to a non-
dispersivemedium and it serves to illustrate the breakdown of the S-matrixdecomposition inmomentum space.

4.1. Ultrastrong scattering
Let us consider a systemdescribed by the followingHamiltonian

H a a J a a a a g a a . 25
x

x x
x

x x x x1 1 0 0å ås s s s= D + - + + + ++ -
+ +

- +( ) ( )( ) ( )† † † †

The scatterer is a two-level systemdescribed by the ladder operators s and the level splittingΔ. The lattice
tight-bindingHamiltonian, describes an array of identical cavities with frequency ò, cavity–cavity coupling J, and
bosonicmodes a a,x y xyd=[ ]† .Wework in units such that the lattice spacing is the unit of length.

The latticemodel (second and third terms of theHamiltonian) is diagonalized inmomentum space, giving
raise to a cosine-shaped dispersion relation, J k2 cosk w = - . Some recent implementations of such cosine-
shaped dispersion are superconducting coupled resonators and photonic crystals (see [23, 40, 41] respectively).

The scatterer-waveguide interaction, which is described by the last term, is point-like and g is the coupling
constant.

The light–matter interaction term can be expressed as a sumof the RWApart, g a a0 0s s++ -( )† , and the

so-called counter-rotating terms, g a a0 0s s+- +( )† . The latter can be neglected if g is small enough compared to
the other energies of the full system. This is known as the RWA. It is well known that the RWA simplifies the
problembecause: (i) the new effectivemodel conserves the number of excitations and (ii) the ground state is the
trivial vacuum vacñ∣ with avac vac 0xs ñ = ñ =-∣ ∣ x" . However, when the coupling strength is large enough—
the so-called ultrastrong coupling regime—the RWA fails to describe the dynamics and one has to use the full
Rabimodel (25). This regime not only represents an interesting and challenging problemwherewe can test our
theoretical framework, but it describes a family of current experiments [24, 52–54] for which the following
simulations are of interest. An important remark is that, despite the fact that the number of excitations
N a ax x x s s= å + + -ˆ † is not a good quantumnumber, i.e. H N, 0¹[ ˆ ] , numerical simulations indicate that the
total number offlying photons is asymptotically conserved throughout the simulation [35, 37]. Therefore, the
second condition needed for proving our results is fulfilled (see section 2.4).

We have studied thismodel using thematrix-product-state variational ansatz, a celebratedmethod for
describing the low-energy sector of one-dimensionalmany-body systems [55–58], which has been recently
adapted to the photonic world in [35, 37, 59]. Using this ansatz, we computed the nontrivialminimum-energy
state [35], which consists of a photonic cloud exponentially localized around the qubit, seefigure 2. This result
confirms our theoretical predictions from equation (13) and implies that theminimum-energy state 0W ñ∣ can be
approximated by the vacuum far away from the qubit.

According to the previous result, we can generate free wave packets, such as input and output states of
equations (C1) and (C2) by inserting photons far away from the scatterer.We have used theMPS ansatz to study
the evolution of input states which consist of a pair of photons, see equation (C1), with 0W ñ = W ñn∣ ∣ . Bothwave

Figure 2.Number of excitations in position space of theminimum-energy state of (25) for 1 = , J 1 p= , and 1D = , varying g.
The coordinate x is dimensionless, sincewe are working in units such that the lattice spacing b is 1.

7

New J. Phys. 20 (2018) 013017 E Sánchez-Burillo et al



packets will beGaussians, equation (6), withmeanmomentum k̄ andwidthσ. The numerical simulations show
that the scattering is elastic for the chosen parameters ( 1 = , J 1 p= , 1D = = , andg=0.3) [35].

We have also demonstrated numerically that the correlation between output photons vanish as the
separation between the inputwave packet increases. Our study aimed at computing the two-photonwave
function inmomentum space, t a a tp p p p, 0

1 2 1 2
f = áW Y ñ( ) ∣ ∣ ( ) . This was used to compute the fluorescence F at

time t+, the number of output photonswhose energy andmomentumdiffer from the inputwave packets.More
precisely

F p p td d , 26p p1 2 ,
2

1 2ò f= +∣ ( )∣ ( )

with p1 and p2 such that 2p p k1 2
w w w s+ =  w( )¯ and , ,p p k k1 2

w w w s w sÎ - +w w( )¯ ¯ , being sw thewidth of the
inputwave packets in energy space. Figure 3(g) shows F as function of the distance between the incident wave
packets.When thewave packets are close enough the fluorescencemaximizes and the output wave function
shows a nontrivial structure, with t 0p p,1 2

f ¹+( ) even though p k1 ¹∣ ∣ ¯ or p k2 ¹∣ ∣ ¯ (see panels (a) and (c)). The
wave function has also a rich structure in position space, with antibunching in the reflection component and
superbunching in the transmission one (see panels (b) and (d)). This structurewas already found in the RWA
[60]. For long distances, the fluorescence F vanishes (see panels (e) and (f)). In these cases, the output state is
clearly uncorrelated: in position space it is formed by twowell-definedwave packets and tp p,1 2

f +( ) goes to zero if
p k1 ¹∣ ∣ ¯ or p k2 ¹∣ ∣ ¯. All this is a consequence of the cluster decomposition, see equation (22) and theorem4 in
appendix C.

4.2. Inelastic scattering and linear dispersion relation: the cluster decomposition revisited
We set c kkw = ∣ ∣ inH0. The scatterer and interaction are described by

H E E J J , 27
M

J

M

Jsc
0

1

0

1

å å= W ñáW + ñá
n

n n n
=

-

=

¢-

∣ ∣ ˜ ∣ ∣ ( )

H g J a H.c. , 28
J

M M

Jint
0

1

0

1

, 0å å= ñáW +
n

n n
=

¢-

=

-

(∣ ∣ ) ( )

where W ñn{∣ }and Jñ{∣ }are the ground and decaying states of the scatterer, respectively, En{ }and EJ{ ˜ } are their
energies,M and M ¢ is the number of ground and excited states, respectively, and gJ ,n is the coupling strength
corresponding to the transition JW ñ « ñn∣ ∣ (seefigure 4). This is a prototypical situation inwaveguideQED.
E.g., if there are two ground states,M=2, and the decaying state is unique, M 1¢ = , the scatterer is aΛ atom.
Fromnowon, wework in units such that c=1.We further assume chiral waveguides: the scatterer only couples
to k 0> , which simplifies thefinal expressions, sowe can start from equation (24). Before writing down the
two-photon S0-matrix inmomentum space, we need the one-photon scatteringmatrix. Imposing energy
conservation, it has to be

S t k p E k E , 29pk d= + - -mn mn m n( ) ( ) ( ) ( )

with k and p the incident and outgoingmomenta, respectively, and W ñn∣ and W ñm∣ the initial andfinal ground
states. The factor t kmn ( ) is the so-called transmission amplitude. TheDirac delta guarantees energy conservation.
Then, the two-photon S0-matrix, equation (24) inmomentum space is

S S

t k t k

p E k E
p p E k k E

y x
1

2
e d d

i

2 i0
. 30

n m

M
n n

m n

pk yx
p y x k0

2
0 i i 2 2

, 1

2

0

1

1 2 1 2

T T

å å

p

p
d

=

=
+ - - +

+ + - - -

mn mn

l

ml ln

m l
m n

- +

= =

-
¢

+

∬( )
( )

( )

( ) ( )
( ) ( )

Here, n n¢ ¹ , e.g., n 2¢ = if n=1. The computation is detailed in appendix F. This structure has recently been
found byXu and Fan for aΛ atom (M= 2, M 1¢ = )within the RWAandMarkovian approximations [38]. At
first sight (30)may look striking. Thematrix S0 is not the product of twoDirac-delta functions conserving the
single-photon energy, as discussed in section 3.2. Themathematical origin of the structure can be traced back to
its form in position space, equation (24). TheHeaviside functions set the order inwhich the different wave
packets impinge on the scatterer. The product ofDirac-delta functions is recovered ifM=1 (see appendix F).
Besides, equation (30) is also remarkable because presents the generalization of the cluster decomposition for the
S-matrix (see equations (16) and (17))when inelastic processes occur in the scattering.

A consequence of (30) is that S0 contributes to thefluorescence F, equation (26). This seems to contradict our
previous arguments, since S0 is built from causally disconnected one-photon events (they do not overlap in the
scatterer). To solve the apparent paradoxwe recall that (30) is amatrix element inmomentum space (delocalized
photons). For wave packets (5), the scattering amplitude is the integral of these wave packets with (30). In doing
sowefind that the fluorescence decays to zero as the separation grows, thus solving the puzzle.
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Inwhat follows thefluorescence decay is discussedwithin the full S-matrix, i.e. we consider the
contributions to F from S0 andT (see equation (16)). Energy conservation imposes that
T C p p E k k Ep p k k p p k k 1 2 1 21 2 1 2 1 2 1 2

d= + + - - -mn mn m n( ) ( ) ( ). Since the contribution ofT vanishes as the
photon–photon separation increases,Cmust be sufficiently smooth, at least smoother than aDirac delta [1].
Then, we assume that Cp p k k1 2 1 2 mn( ) has simple poles with imaginary parts

n
Cg{ }. Similarly, we expect that

divergences of t kmn ( ) come from simple poles with imaginary parts n
tg{ }. As far aswe know, this structure has

been found for all S-matrices inwaveguideQED [27, 38, 61, 62].
Let us write down the input state inmomentum space

k k k k a ad d e . 31k l
k kin 1 2 1 1 2 2

i 2
1 2ò f fY ñ = W ñn∣ ( ) ( ) ∣ ( )† †

The functions k1f ( ) and k2f ( ) are localized far away the scattering region in position space. The exponential
factor e k li 2 ensures the separation between bothwave packets is l. The output state reads

Figure 3.Outputwave function inmomentum/position space, (a)/(b), (c)/(d), and (e)/(f) for several values of the distance between
the input photons and (g)fluorescence F for the two-photon output state as a function of the distance l between the two input wave
packets. The values of the distances of the panels (a)–(f) are indicated in the panel (g).We choose g=0.3. The values for the other
parameters coincidewith those offigure 2. Both incoming photons are on resonancewith the qubit, kw = D. The distance l is in units
of l 1.719c s , with lc such that we can resolve the incident packets if and only if l lc> .
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S p p p p a ad d , 32p pout in 1 2
out

1 2 1 2òå fY ñ = Y ñ = W ñ
m

m m∣ ∣ ( ) ∣ ( )† †

with the two-photonwave function p p,out
1 2fm ( )

p p k
t k t p p E k E

p E k E
C

k p p E k E p p E k E k

, d
i

2 i0
i

e e ,

33

n m
n

n n

m n
p p k

n
p p E k E l

n n
k l

n

out
1 2

1

2

1

2
1 2

1
i

2 1 2 1 1 2
i

2

n

n n

1 2

1 2

òå å åf
p

f f f f

µ
+ + - -

+ - - +
+

´ + + - - + + + - -

m
l

ml ln m n

m l
mn

m n m n

= =
+

+ + - -m n

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )
( ˜ )

( ( ) ( ) ( ) ( ))
( )

( )

being C k C p p E k k Edp p k n p p k k n n1 2n n n1 2 1 2ò d= + + - - -mn mn m n( ˜ ) ( ) ( )¯ ¯¯ , with n n¹¯ . Even though this expres-
sion is cumbersome, we can clearly identify the contribution of S0 andT.We solve this integral bymeans of the
residue theorem. Each pole

n
tg and n

Cg , together with the exponentials e k li n and e p p E k E li n1 2+ + - -m l( ) , gives an

exponentially decaying term, e ln
tg-∣ ∣ or e ln

Cg-∣ ∣ .We choose Lorentzian envelopes for thewave packets. They have
a pole at k is-¯ (see equation (7)). In consequence, thewave packets will give a termproportional to e ls- . Lastly,
the imaginary part of the pole of thefirst term vanishes, i0~ +, so it gives a nondecaying term, e 1l0 =- +

. The real
part of this denominator imposes the single-photon-energy conservation. Thus, it results in the amplitude for
the single-photon events, A A1, 2,ål n l l m  . Therefore, nor S0 neitherT containsfluorescent terms as the
separation between thewave packets grows. The technical details are in appendixG.

As a final application, one can find experimentally the poles of the one- and two-photon scatteringmatrices

n
tg{ }and n

Cg{ }bymeasuring the decay of Fwith the distance.

5. Final comments

Ourwork represents a significant evolution over thefield-theoreticalmethods [13] that have been so successfully
adapted to the study of waveguideQED.Developing an extensive set of theorems shown in the appendices, we
have completed a program that derives the properties of theN-photon S-matrixfrom the emergent causal
structure of a nonrelativistic photonic system. This, togetherwith the fact that the ground states of the
Hamiltonian are trivial far away from the scatterer and the asymptotic independence of input and outputwave
packets, allows us to build a consistent scattering theory. Among the consequences of this framework, we have
explained how the existence of Raman (inelastic)processesmodifies the usual formof the cluster decomposition
to produce a structure that includes the particular example developed in [38].

Our formal results also provide insight in the outcome of simulations for problemswhere no analytical
derivation is possible, such as a qubit ultrastrongly coupled to awaveguide [35, 37]. As a second example, we
have considered a non-dispersivemedia c kkw = ∣ ∣, wherewe found the general form for the scatteringmatrix in
momentum space (independent of the scatterer and the coupling to thewaveguide), which has been recently
calculated for aΛ atom [38] as a particular case. On top of that, we have clarified how fluorescence decays in a
general scattering experiment.

Throughout the previous discussionwe have focused our attention to scattering processes which involve the
same number offlying photons both at the input and the output (see section 2.4), but this is just a convenient
restriction that can be lifted. Onemay incorporatemore scattering channels for the photons using extra indices
to keep track of the photon-annihilation and creation processes, which results in a slightlymore involved
version of theorem4. In particular, we can incorporate photon-creation events (see e.g. [59]). Finally, our
program can be extended to treat other systems, deriving a cluster decomposition for the scattering of spinwaves
in quantum-magnetismmodels or for fermionic excitations inmany-body systems.

Figure 4. Level structure of the scatterer described by theHamiltonian (27), interacting with awaveguide via (28). The photons induce
transitions between the set of states Jñ{∣ } and the ground states W ñn{∣ }with coupling strengths gJ ,n .
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AppendixA. The ground state of the light–matter interaction

In this appendixwe demonstrate that the ground state converges to the trivial vacuum far away from the
scatterer, equation (13). The next lemma is neccessary to proof themain theorem.

Lemma1.Given the waveguide-QEDmodel (2), we have the following bounds for the expectation values on its
minimum-energy state 0W ñ∣ ,

a a
g g

GG . A1k p
k p

k p
0 0 0 0

w w
áW W ñ áW W ñ∣ ∣ ∣ ∣ ∣ ∣ ( )† †

Proof. Let us assume that 0W ñ∣ is theminimum-energy state ofH as given by equation (2), and thus
H E 00 0- W ñ =( )∣ . The energy of the unnormalized state

O , A20cñ = W ñ∣ ∣ ( )

created by any operatorOmust be larger or equal to that of the ground state, H E 00 c cá - ñ∣( )∣ . Using (A2)

H E O HO O OH A30 0 0c cá - ñ = áW - W ñ∣( )∣ ∣ ∣ ( )† †

we concludewith the useful relation

H E O H O, 0. A40 0 0 c cá - ñ = áW W ñ∣ ∣ ∣ [ ]∣ ( )†

Let us take O ak= . The previous statement leads to

a a g G 0, A5k k k k0 0 wáW - - W ñ∣ ( )∣ ( )†

or equivalently

a a
g

Ga0 . A6k k
k

k
k0 0 0 0 

w
áW W ñ - áW W ñ∣ ∣ ∣ ∣ ( )† †

UsingCauchy–Schwatz, this translates into the upper bound

a a
g

GG a a . A7k k
k

k
k k0 0 0 0 0 0

w
áW W ñ áW W ñáW W ñ∣ ∣

∣ ∣
∣ ∣ ∣ ∣ ( )† † †

Once the diagonal elements of the correlationmatrix are bounded the nondiagonal can also be bounded. The
correlationmatrix is positive C 0 with C a akp k p0 0= áW W ñ∣ ∣† . A property of positivematrices is [63]

C C C A8kp kk pp∣ ∣ ∣ ∣∣ ∣ ( )

which implies (A1).

With this lemma at handwe state:

Theorem1. Let us define
kxx

y ¯ ¯
† as the operator (5) removing the time-dependent part, where kkf ( )¯ is infinitely

differentiable with a finite support K centered around k̄ . Then, the expected value of kx kxy y¯ ¯
† ¯ ¯ in theminimum-energy

state fulfills

x0, , A9
kx kx0 0y yáW W ñ   ¥∣ ∣ ∣ ¯∣ ( )¯ ¯
† ¯ ¯

where we choose x 0sc = .Moreover, if we can assume that a ak pá ñ† is an n-times differentiable function of k and p, the
boundwill be improved

x x, . A10
kx kx

n
0 0 y yáW W ñ  ¥-∣ ∣ (∣ ¯∣ ) ∣ ¯∣ ( )¯ ¯

† ¯ ¯

Proof. Let us compute the expectation value of the number operator for awave packet N
kx kx0 0y yáW W ñ≔ ∣ ∣¯ ¯
† ¯ ¯ ,

N a a k p k pe d d . A11k p
k p x

k k0 0
i *f f= áW W ñ -∬ ∣ ∣ ( ) ( ) ( )† ( ) ¯ ¯ ¯
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Wecan rewriteN as the Fourier transform of another function N F u ue duxiò= ( )¯ , where

F u u v u v a a v
1

2
2 2 d . A12k k u v u v2 2*ò f f+ - á ñ+ -( ) ≔ (( ) ) (( ) ) ( )¯ ¯ ( )

†
( )

Weare now going to assume that kkf ( )¯ is a test functionwith compact supportK of size K∣ ∣ centered around k̄ ,
and infinitely differentiable.Wewill also assume that within its support g GG Ck k

2 w á ñ f∣ ∣ † for some constant
Cf. Thenwe can bound

F u u K Cd . A132ò f∣ ( )∣ ∣ ∣ ( )

Assuming that a ak p0 0áW W ñ∣ ∣† is n-times differentiable and using theRiemann–Lebesgue theorem,we have then
that

F u u xe d A14ux ni ò -( ) (∣ ¯∣ ) ( )¯

at long distances.

Appendix B. Approximate causality

B.1. Free-field causality
Wefirst prove causal relations in a free theory. In order to do so, weworkwith localizedwave packets tkxy ( )¯ ¯ ,
equation (5). Actual calculations are donewithGaussianwave packets, equation (6). The following two lemmas
are used in the demonstration of the theorem.

Lemma2. Let the dispersion relation kw have an upper bounded group velocity vk k kw= ¶ :

v c. B1k ∣ ∣ ( )

Then, the function f k kx tkw= -( ) only has stationary points if the distance to the light cone is nonnegative. In
other words

d x t x c t f k k, 0 0, . B2c = - >  ¢ > "( ) ∣ ∣ ∣ ∣ ∣ ( )∣ ( )

Proof. Solving the equation f k x t 0k kw¢ = - ¶ =( ) leads to the condition vx

t k= or x t v ck =∣ ∣ ∣ ∣ . Then,

provided f k 0¢ =( ) , it follows x c t d x t, 0c ∣ ∣ ∣ ∣ ( ) , which shows (B2). ,

Lemma3.Assume that kw is n-times differentiable and that every derivative k
r nw∣ ∣( ) is upper bounded by anmth

order polynomial in k∣ ∣. Then the following integral bound applies

p k k t
x

e d max , 1 max , 1
1

,kx k k t m n r n
n

i i k
1
2 0

2
ò s=w- - - + +

s

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

∣ ∣
( )

where p(k) is a polynomial of degree r.

Proof.Result 5.1 from [64] states that the integral I x q k ke d
a

b kxiò=( ) ( ) may be integrated by parts n times,

obtaining

I x
x

q a q b x
i

e e , B3
s

n s
ax s bx s

n
0

1 1
i i å= - +

=

- +
⎜ ⎟⎛
⎝

⎞
⎠( ) [ ( ) ( )] ( ) ( )( ) ( )

where the error term satisfies

x
x

q k k o x
i

e d B4n

n
kx n ni ò= = -⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( ) ( )( )

provided that q(k) is n-times differentiable and that q Ln 1Î( ) . Based on the conditions of the lemma, this is

satisfied since q k p ke k k ti k
1
2 0

2
= w- - -

s( ) ( )( ) . The limits of the integralmay be easily extended to ,¥ as explained
in result 5.2 from [64]. Since x q a 0s s - ( )( ) when a x, , ¥ " we obtain

I x q k k
x

q k ke d
i

e d . B5kx
n

kx ni iò ò= = ⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )( )

Moreover, q n( ), resulting from a product of derivatives of t ,kw k2 2s- and the polynomial p(k) of degree r, is
bounded by a polynomial of atmost m n r+ +( )th order in k∣ ∣. Such a polynomial is integrable togetherwith
theGaussianwave packet giving a constant prefactor. In estimating this factor, we can take theworst-case
scenario for the terms in t, which appears atmost n times together with k k

nw¶( ) , and themonomials in k∣ ∣, which
produce another prefactor m n rs + + .
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Note that it would suffice to consider q(k) as a test function or even a Schwartz function since in this case all
the differentiability requisities are fullfilled and x q a 0 0s s  - ( )( ) when a x, ¥ " still holds, because
these functions and their derivatives are rapidly decreasing.

With these lemmas at handwe can prove:

Theorem2. Let theHamiltonian be given just by the photonic part, H k a ad k k k0 ò w= † . Let tkxy ( )¯ ¯ and tpyy ¢( )¯ ¯
denote two localized wave packets of the form(6).Wewill assume that: (i) the absolute value for the group velocity of
these wave packets is upper bounded by a constant c within the domain of the wave packets ( v ck k k w= ¶∣ ∣ ∣ ∣ ) and
(ii) the dispersion relation is n-times differentiable and that each derivative is upper bounded by a polynomial of at
most orderm:

a k b a b, 0 , . B6k
r n

k r r
m

r r w¶ + < < +¥∣ ∣ (∣ ∣ ) ( )( )

The commutator between these wave packets is small whenever they are outside of their respective light cones, that is,
whenever d y x c t t 0= - - ¢ - ∣ ¯ ¯∣ ∣ ∣ ,

t t
d

d,
1

, . B7kx py n
y y ¢ =  ¥ 

⎛
⎝⎜

⎞
⎠⎟[ ( ) ( ) ]

∣ ∣
( )¯ ¯ ¯ ¯

†

Proof. Let us assume that themodel evolves freely according to the freeHamiltonian H k a ad k k k0 ò w= † . In this
case, ourwave packet operators have the simple form

t k a ke 0 d , B8kx
kx t

k k
i i k *òy f= w-( ) ( ) ( ) ( )¯ ¯

¯ ¯

and analogously for tpyy ¢( )¯ ¯ . The commutator between operators reads

I t t k k k, e d . B9kx py
k x y t t

k p
i i k *òy y f f¢ = w- - - ¢≔ [ ( ) ( ) ] ( ) ( ) ( )¯ ¯ ¯ ¯

† ( ¯ ¯) ( ) ¯ ¯

Let d d x y t t x y c t t, 0c= - - ¢ = - - - ¢ >( ¯ ¯ ) ∣ ¯ ¯∣ ∣ ∣ , using lemma 2we know that the exponent has no
stationary point. Assumingw.l.o.g. x y>¯ ¯, t t> ¢ (other combinations are analogous) andwriting

ck,k kw w= -˜ we obtain

I k k k k k ke d e d .k x y t t
k p

k d x y t t t t
k p

i i i , ik c k* *ò òf f f f= =w w- - - ¢ - - ¢ - - ¢( ) ( ) ( ) ( )( ¯ ¯) ( ) ¯ ¯
( ¯ ¯ ) ˜ ( ) ¯ ¯

The exponent ckk kw w= -˜ is n-times differentiable and is upper bounded inmodulus by a polynomial of
degree m 1 . Lemma 3 therefore allows us to bound the commutator by a term d n -( ). ,

Note that for a linear dispersion, c kkw = ∣ ∣, we can rewrite this integral as a function of the distance between
world lines from equation (B2), d x y c t t= - - - ¢( ¯ ¯) ( ). Introducing k k p 2=  ( ¯ ¯) and using our
Gaussianwave packets(6), we obtain

I
k d

exp
4

. B10
2

2

2 2

s
s

= - --
⎡
⎣⎢

⎤
⎦⎥∣ ∣ ( )

This bound is better than the onewe have found but it is compatible with lemma 3 and theorem2.

B.2. Fullmodel causality
Causal relation (B7) can be extended to the fullmodel (2).

Theorem3. LetH be the light–matterHamiltonian given by equation (2).We assume the conditions of theorem 2:
differentiable, polynomially bounded functions kw and gk, with degrees n 2 . Then, all wave packets outside the
light cone of the scatterer evolve approximately with the freeHamiltonian, H0.More precisely, if x t, 1( ¯ ) and x t, 0( ¯ ) are
two points outside the light cone

t U t t t U t t
d

, ,
1

, B11kx kx n1 0 1 0 0 0 1 0
min

1
y y= +

-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )

∣ ∣
( )¯ ¯

† ¯ ¯

where d d x t d x tmin , , , 0min 1 0= { ( ¯ ) ( ¯ )} and

U t t t t H, exp i B120 0 0 0= - -( ) ( ( ) ) ( )

is the free-evolution operator for the photons at time t0.
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Proof.We start by building theHeisenberg equations for the operators

a t a t g G ti i . B13t k k k kw¶ = - -( ) ( ) ( ) ( )

Making the change of variables a t b tek
t

k
i k= w-( ) ( ), we have

b t g G ti e , B14t k k
ti k¶ = - w( ) ( ) ( )

so that thewave packet operators evolved from some initial time ts are

t b t g G k ke i e d d B15kx
kx t

k s
t

t

k k
i i ik

s

kò òy t t f= -w w t- +
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )¯ ¯

¯ ¯

U t t t U t t g k k G, , i e d d B16s kx s s
t

t
kx c t

k k0 0
i i

s
ò òy f t t= - t- -⎡

⎣⎢
⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( )¯ ¯

† ¯ ( ) ¯

U t t t U t t g k k G, , i e d d . B17s kx s s

t t
kx c

k k0 0
0

i i
s

ò òy f t t= - ¢t
-

- ¢⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( ) ( )¯ ¯

† ¯ ¯

Thefirst part corresponds to free evolution, while the second part is an error term te( ), which can be bounded.
Wewill assumewithout loss of generality G 1=  , with ∣∣ · ∣∣ theHilbert–Schmidt norm, and t t1 0>∣ ∣ ∣ ∣.We
have to choose the integration limits t and ts so that xsign signt¢ =( ) ( ). If x 0> then t t 01 0> > and
t t t t, ,s 1 0=( ) ( ) is a good choice. If x 0< then t t0 0 1> > and again t t t t, ,s 1 0=( ) ( ) is also a valid choice
( 0t¢ < ). Thismeanswe can introduce xsign 0t t = ¢( ) and bound

t q k k
d x

e d d
1

,
d B18

t t
x kd x

t t

c
n1

0

i sign ,

0

c
1 0 1 0

 ò ò òe t
t

t


t
-


- ⎛

⎝⎜
⎞
⎠⎟∣ ( )∣ ( )

(∣ ¯∣ )
( )

∣ ∣
( ¯) (∣ ¯∣ )

∣ ∣

c n x c d x t t

1

1

1 1

,
. B19

n

t t

c
n1

0 1 0
1

1 0

  
t- - -t

t

-
=

= -

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟( ) (∣ ¯∣ ) (∣ ¯∣ ∣ ∣)

( )
∣ ∣

Herewe have taken into account that d x d x t t, , 0c c 1 0t - >(∣ ¯∣ ) (∣ ¯∣ ∣ ∣) in the domain of integration.We can
nowuse the fact that d x t t d x t d x t d x t, , min , , ,c c c c1 0 1 1 0 -(∣ ¯∣ ∣ ∣) (∣ ¯∣ ∣ ∣) { ( ¯ ) ( ¯ )}, obtaining the expression in the
theorem. ,

B.3. Asymptotic condition
One important limitation of theorem3 is that it is focused on the operators, not on the states themselves. This is
a key point. For having awell defined scattering theory, the asymptotic conditionmust holds (see section 2.3 and
equation (9)). However, using theorems 1 and 3we have that, given a state tk x, 0yYñ º W ñn∣ ( ) ∣¯ ¯

† , then

U t U t t U t

U t t U t U t . B20

k x

k x

, 0

0 , 0 0 0 in

y
y

Yñ= W ñ

= W ñ º Y ñ
n

n

  

  

( )∣ ( ) ( ) ( ) ∣
( ) ( ) ( ) ∣ ( )∣ ( )

¯ ¯
†

¯ ¯
†

Thefirst equality is up to a global phase. In the second line, we have used theorem3. In the last line, we can
introduce input (output) states since thewave packets arewell separated (t  ¥ ) from the scatterer and, by
means of theorem 1 and the conditions presented in 2.4 they arewell defined free particle states.

This last result warrants that, under rather general conditions, the light–matterHamiltonian (2) gives a
physical scattering theory.

AppendixC. Scattering amplitude decomposition

Theorem4. Let us suppose the input state is

, C1
n

N

k xin in
1

in
n n

y yY ñ = W ñ = W ñn n
=

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ( )†

¯ ¯
†

with x xn m-  ¥∣ ¯ ¯ ∣ n m" ¹ . Thus, the scattering amplitude of going to

, C2
n

N

p yout out
1

out
m my yY ñ = W ñ = W ñm m

=

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ( )†

¯ ¯
†

with y yn m-  ¥∣ ¯ ¯ ∣ n m" ¹ , is reduced to a product of single-photon events:

A t t , C3
M

n

N

p y k x
, , 0

1

1

out in

N

n n n n n n

1 1

1å  y y= áW W ñ
l l

l l
¼ =

-

=
+ -

-

- ∣ ( ) ( ) ∣ ( )¯ ¯ ¯ ¯
†

being 0l m= and Nl n= , with the wave packet operators given in theHeisenberg picture for t t=  ¥ .
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The proof is based directly on causality. Therefore, wefind convenient to discuss it here.

Proof.The proof is done for the two-photon scattering. The generalization forN photons is straightforward.
The scattering operator S is nothing but the evolution operator in the interaction picture, see equation (11). This
permits towrite the scattering amplitudes as,

A S U t t t t, .Iout in out in out iny y y y= áY Y ñ = áW W ñ = áW W ñn m n m+ - + -∣ ∣ ∣ ( ) ∣ ∣ ( ) ( ) ∣† †

In the second equalitywehave dropped an irrelevant global phase.Here, iny† and outy† are operators creatingwave
packets localized far away from the scatterer. Because of theorem1, they arewell definedN-photonwave packets.

Using equations (C1) and (C2) the amplitude is given by

A t t . C4
m

p y
n

k x
1

2
out

1

2
in

m m n n
 y y= áW W ñm n
=

+
=

-∣ ( ) ( ) ∣ ( )¯ ¯ ¯ ¯
†

As x x1 2-∣ ¯ ¯ ∣can be arbitrarily large, we can always choose a time t1 such that tp y
out

1 1
y W ñm( ) ∣¯ ¯

† is well separated

from the scatterer for t t1> , so t U t t t U t t, ,p y p y
out

0 1
out

1 0 1
1 1 1 1

y y@( ) ( ) ( ) ( )¯ ¯
†

¯ ¯ . Besides, t1 is such that the secondwave

packet is still far away from the scatterer. Therefore t U t t t U t t, ,
k x k x
in

0 1
in

0 1
2 2 2 2

y y¢ @ ¢ ¢( ) ( ) ( ) ( )¯ ¯
†

¯ ¯ , for t t1¢ < . Using

theorem2, t t, 0p y k y
out in

1 1 2 2
y y + -[ ( ) ( ) ]¯ ¯ ¯ ¯

† and equation (C4), the amplitude equals to

A t t t t . C5p y k y p x k x
out in out in

2 2 2 2 1 1 1 1
y y y y= áW W ñm n+ - + -∣ ( ) ( ) ( ) ( ) ∣ ( )¯ ¯ ¯ ¯

†
¯ ¯ ¯ ¯

†

Finally,we insert the identity between the operators t
k x
in

2 2
y -( )¯ ¯

† and tp y
out

1 1
y +( )¯ ¯ . Assuming there is not particle

creation and just the ground states M
0
1W ñl l=

-{∣ } will contribute to the identity, M
0
1å W ñáWl l l=

- ∣ ∣, andwe arrive to (C3).
This comes because t

k x
in

2 2
y -( )¯ ¯

† and tp y
out

1 1
y +( )¯ ¯ asymptotically commute but not t

k x
in

1 1
y -( )¯ ¯

† and tp y
out

2 2
y +( )¯ ¯ . This is

a clear signature of causality, sayingwhich one is arriving first. Lastly, notice that if the ground state is unique,

0n
W ñ = W ñl∣ ∣ , this ordering is not important as the amplitude is simply the product of single-photon scattering
amplitudes.

AppendixD. Scattering amplitude from equation (24)

In this appendix, we prove that (24) is consistent with the amplitude factorization from theorem4,
equation (C3).We do it in the two-photon subspace.

Before, we need the one-photon amplitude as an intermediate result.

D.1.One photon
Wefirst need to compute the one photon amplitude. Let the one-photon input state be,

, D1
k xin

1
,

in
1 1

yY ñ = W ñn∣ ∣ ( )¯ ¯
†

with the creation operator
k x,
in

1 1
y ¯ ¯

† given by equation (5), removing the time dependence. For simplicity, we absorb

the factor e kxi 1̄ into thewave packet: k kek x
kx

k,
i

1 1
1

1
f f=( ) ( )¯ ¯

¯ ¯ . In position space, the output statewill read

S y x S x yd d , . D2
M

yx k xout
1

in
1

1
,1 1òå fY ñ = Y ñ = W ñ

m
mn m

=

∣ ∣ ( ) ( )∣ ( )¯ ¯

Defining

y x S xd D3yx k x1, ,1 1òf f=mn mn( ) ( ) ( ) ( )¯ ¯

and

y y yd ; , D4out
1

1, 1,òx fñ = W ñmn mn m∣ ( )∣ ( )

being y a; yW ñ = W ñm m∣ ∣† the state with a photon at y and the scatterer in the ground state W ñm∣ , the output state
(D2) can be rewritten as

. D5
M

out
1

1
out
1

1,å xY ñ = ñ
m

mn
=

∣ ∣ ( )

The probability amplitudewill read

A S y y yd . D6p y k x p y1, ,
out

,
in

, 1,1 1 1 1 1 1
*òy y f f= áW W ñ =n m m n mn ∣ ∣ ( ) ( ) ( )¯ ¯ ¯ ¯

†
¯ ¯
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If thewave packets aremonochromatic withmomenta k1 and p1, respectively, this amplitude is

A S . D7p k1, 1 1=n m mn ( ) ( )

D.2. Two photons
The two-photonwave packet, as sketched infigure 1, is

. D8
k x k xin

2
,

in
,

in
1 1 2 2

y yY ñ = W ñn∣ ∣ ( )¯ ¯
†

¯ ¯
†

By definition, the output state is

S . D9out
2

in
2Y ñ = Y ñ∣ ∣ ( )

Here, we are interested in he limit of well separated incident photons. Thus, only the linear part of the scattering
matrix S0 is considered.We introduce the identity operator

S , D10out
2

in
2 Y ñ = Y ñ∣ ∣ ( )

with

x x x x x x
1

2
d d ; ; , D11

M

1
1 2 1 2 1 2 òå= W ñá W

m
n n

=

∣ ∣ ( )

being x x a a; x x1 2 1 2
W ñ = W ñn m∣ ∣† † the symmetrized state with two photons at x1 at x2 and the scatterer at W ñn∣ .

Introducing (D11) in (D10) and considering (D8) and (24)we get

y y x x S S y y x x

x x y y

1

4
d d d d

; . D12

M

n m
y x y x n n k x k x

k x k x

out
2

1 2 1 2
, 1 , 1

2

, 1 , 2

, 2 , 1 1 2

n m n m 1 1 2 2

1 1 2 2

ò å å q f f

f f

Y ñ= -

+ W ñ
m l

ml ln

m

= =
¢¢ ¢∣ ( ) ( ) ( )( ( ) ( )

( ) ( ))∣ ( )

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

with n n¢ ¹ and m m¢ ¹ . Now,we have to compute integrals as

C x x S S x x y yd d . D13
n m

y x y x k x k x n n1 2
,

, 1 , 2n m n m i i j jò å f f q= -ml ln ¢¢ ¢( ) ( ) ( ) ( ) ( ) ( )¯ ¯ ¯ ¯

Using equation (D3)

C y y y y y y . D14
n

i n j n j n i n n n
1

2

, , , ,å f f f f q= + -ml ln ml ln
=

¢ ¢ ¢( ( ) ( ) ( ) ( )) ( ) ( )

Following the sketch drawn infigure 1, if x xm m< ¢, then x xm m1 2f f ¢( ) ( ) is zero, so y yn n1, 2,f fmn mn ¢( ) ( ) is zero if
y yn n< ¢. Therefore, choosing i=1 and j=2, the integralC reads

C y y . D15
n

n n
1

2

2, 1,å f f= ml ln
=

¢( ) ( ) ( )

One can easily show that the same expression holds if we take i=2 and j=1. The output state, equation (D12),
then reads

y y y y y y y y
1

2
d d ; . D16

M

out
2

1 2
, 1

2, 1 1, 2 2, 2 1, 1 1 2ò å f f f fY ñ = + W ñ
m l

ml ln ml ln m
=

∣ ( ( ) ( ) ( ) ( ))∣ ( )

Finally, the probability amplitude of going to the output state p y p y,
out

,
out

1 1 2 2
y y W ñm∣¯ ¯

†
¯ ¯

† will be the overlap between this
state and (D16). Using (D6)

A S A A , D17p y p y k x k x

M

in out ,
out

,
out

,
in

,
out

0

1

1, 2,
1 1 2 2 1 1 2 2

åy y y y= áW W ñ =m n
l

n l l m
=

-

 ∣ ∣ ( )¯ ¯ ¯ ¯ ¯ ¯
†

¯ ¯
†

as expected. In the calculations, we have set S 0p y k x,
out in

i i j j
y yáW W ñ =m n∣ ∣¯ ¯ ¯ ¯

† for i j¹ , sincewe assume that both

incident wave packets are far away.
Afinal comment is in order.Without the step functions in (24), the unphysical amplitude A A2, 1,n l l m 

would appear in thefinal probability amplitude.

Appendix E. S0 for nonchiral waveguides

In this appendix, we generalize the expression for S0 (24) to nonchiralmedia. As introduced in [27], in this case
we can define two sets of bosonic operators: one for right-moving photons and one for left-moving ones. That is,
we have to add a new index to the operators: ax s, , where s =  for right/left-movingmodes. Therefore, the
matrix elements of the scattering operator Shas indices corresponding to the direction of those photons:
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Sys xs mn¢( ) . Considering the scatterer is placed at x=0, the expression of the free part of S for the chiral waveguide
(equation (24)) is easily generalized

S S y y

x s x s y s y spermutations , , ; , , . E1

M

n

N

y s x s
m

N

m m

n n m m n n m m

ys xs
0

... 0

1

1 1

1

1
N

n n n n N n N n

1 1

1å   q= -

+ « ¢ « ¢

mn
l l

l l¢
=

-

=
¢

=

-

+
-

+ - -( ) ( ) (∣ ∣ ∣ ∣)

[ ] ( )

For a chiral waveguide, theHeavisides ensure that the coordinate of an output photon ym 1+ is larger than the
output coordinate ym of a photonwhich interactedwith the scatterer later. Now, this condition is slightly
modified: the absolute value of the coordinate ym 1+∣ ∣ is the quantity necessarily larger than ym∣ ∣ if the m 1+ th
photon interactedwith the scatterer before themth photon.

Notice that the structure is essentially identical to that of the chiral case (equation (24)). Therefore, the
conclusions of themanuscript also hold for the nonchiral case.

Appendix F. S0 inmomentum space

Here, we show S0 inmomentum space follows equation (30). After that, we prove theDirac-delta structure is
recovered if the ground state is unique.

Let us write Sp p k k
0

1 2 1 2 mn( ) as the Fourier transformof Sy y x x
0
1 2 1 2 mn( )

S y y x x S
1

2
d d d d e e . F1p p k k y y x x

p y p y k x k x0
2 1 2 1 2

0 i i
1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2òp
=mn mn

- + +( )
( )

( ) ( )( ) ( )

Due to the formof Sy y x x
0
1 2 1 2 mn( ) , (24), we have to compute integrals as

I x Sd e . F2kx
yx

iò= mn( ) ( )

Notice that Syx mn( ) is the Fourier transformof Spk mn( ) , equation (29). Therefore,

I t ke . F3k E E yi= mn
+ -n m ( ) ( )( )

Considering this in (F1), we get

S y y

t k t k y y

1

2
d d e

e e , F4

p p k k
p y p y

n m

M
k y k y E E y E E y

n n m m

0
2 1 2

i

, 1

2

0

1
i in n m m

1 2 1 2
1 1 2 2

1 2

ò

å å

p

q

=

´ -

mn

l
ml ln

- +

= =

-
+ - + - ¢ ¢

l m n l¢ ¢

( )
( )

( ) ( ) ( ) ( )

( )

( ) [( ) ( ) ]

with n n¢ ¹ and m m¢ ¹ . The Fourier transformof the step function is

y y y
q

1

2
d e

i

2

e

i0
. F5qy

qy
i

0

i 0

òp
q

p
- = 


-

-

+
( ( )) ( )

Therefore, integrating equation (F4)first in y1 and later in y2, we get

S y
t k t k

p E k E

t k t k

p E k E

p p E k k E
t k t k

p E k E

t k t k

p E k E

t k t k

p E k E
p p E k k E

i

2
d e

i0

i0

i

2 i0

i0

i

2 i0
, F6

p p k k
p p E k k E y

n

n n

n

n n

n

n

M
n n

n

n n

n

n m

M
n n

m n

0
2 2

i

1

2

1

1

1 2 1 2
1

2

0

1

1

1

, 1

2

0

1

1 2 1 2

1 2 1 2
1 2 1 2 2ò å

å å

å å

p

p
d

p
d

=
+ - - +

-
+ - - -

= + + - - -
+ - - +

-
+ - - -

=
+ - - +

+ + - - -

mn
ml ln

m l

ml ln

l n

m n
l

ml ln

m l

ml ln

l n

l

ml ln

m l
m n

- + + - - -

=

¢

+

¢

+

= =

- ¢

+

¢

+

= =

- ¢

+

m n
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )

which is the expression given in themain text, equation (30). This result has been recently reported for aΛ atom
byXu and Fan in [38]. Here, we show this is completely general due to our ansatz (equation (24)).

Lastly, we prove that equation (30) is formed by twoDirac-delta functions ifM=1. To do so, we use the
following identity
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k
k

k

1

i0
i

1
, F7pd

+
= - +

+
⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

with  the principal value. Applying this identity to equation (30)we get,

S t k t k p k
p k

p p k k
i

2
i

1
. F8p p k k

n m
n n m n

m n

0

, 1

2

1 2 1 2
1 2 1 2

åp
pd d= - - +

-
+ - -mn

=
¢

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( ) ( ) ( ) ( ) ( ) ( )

Now,we sumover n andm

S t k t k p p k k p k p k p k p k

p k p k p k p k

1

2

1 1 1 1
.

F9

p p k k
0

1 2 1 2 1 2 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 2 1 2

   
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+
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+
-

+
-

+
-

mn

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( ) ( ) ( )( ( ) ( ) ( ) ( )

( )

Applying the constraint imposed by the global Dirac delta to p2 to the second row, it is straightforward to see that
they cancel each other, arriving to

S t k t k p p k k p k p k p k p k

t k t k p k p k p k p k p k p k

p k p k t k t k p k p k p k p k

1

2
1

2
,

F10

p p k k
0

1 2 1 2 1 2 1 1 1 2 2 1 2 2

1 2 2 2 1 1 2 1 1 2 1 2 2 1

1 1 2 2 1 2 1 1 2 2 1 2 2 1

1 2 1 2
d d d d d

d d d d d d

d d d d d d

= + - - - + - + - + -

= - - + - - + - -

+ - - = - - + - -

mn( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ))

( ) ( )( ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )) ( ) ( )( ( ) ( ) ( ) ( ))
( )

which is the usual expression in translational invariant (momentum conserving)QFT for the cluster
decomposition, which also holds inwaveguideQED if the ground state is unique.

AppendixG. Fluorescence decay

In this appendix, we calculate how the correlations and thus thefluorescence decay as the distance l between the
packets grows (see figures 1 and 3).

The input state (C1) inmomentum space is given by,

k k k k a ad d , , G1k kin 1 2
in

1 2 1 2ò fY ñ = W ñn∣ ( ) ∣ ( )† †

with

k k k k, e . G2k
k l

k
in

1 2 1
i

21
2

2
f f f=( ) ( ) ( ) ( )¯ ¯

In these expressions, thewave packets kkn
f ( )¯ are Lorentzian functions (see equation (7)). The out state is

computed bymeans of equation (10)

S S . G3out in in Y ñ = Y ñ = Y ñ∣ ∣ ∣ ( )

With  the identity operator in the two-photon sector: p p a a a a1 2 d d p p p p1 2 1 2 1 2
 ò= å W ñáWm m m∣ ∣† † . The

scatteringmatrix S inmomentum space is S S Tip p k k p p k k p p k k
0

1 2 1 2 1 2 1 2 1 2 1 2
= +mn mn mn( ) ( ) ( ) , with Sp p k k

0
1 2 1 2 mn( ) given by

equation (30) and T C p p E k k Ep p k k p p k k 1 2 1 21 2 1 2 1 2 1 2
d= + + - - -mn mn m n( ) ( ) ( ) yielding

p p p p a ad d , , G4p pout 1 2
out

1 2 1 2ò å fY ñ = W ñ
m

m m∣ ( ) ∣ ( )† †

with

p p k
t k t p p E k E

p E k E
C

k p p E k E p p E k E k

, d
i

2 i0
i

e e .

n m
n

n n

m n
p p k

k n
p p E k E l

k n k n
k l

k n

out
1 2

1

2

1

2
1 2

i
1 2 1 2

i

n

n n

1 2

1
1 2

2 1 2

òå å åf
p

f f f f

µ
+ + - -

+ - - +
+

´ + + - - + + + - -

m
l

ml ln m n

m l
mn

m n m n

= =
+

+ + - -m n

⎛
⎝⎜( )

( ) ( )
( ˜ ) )

( ( ) ( ) ( ) ( ))¯ ( ) ¯ ¯ ¯

Which is nothing but equation (33) that we have rewritten here for the discussion. As said in section 4.2, we
assume that t kmn ( ) and Cp p k kn n1 2 mn( )¯ have simple poles with imaginary parts n

tg{ }and
n
Cg{ } respectively. Then,

this integral is solved by taking complex contours and applying the residue theorem. In order to integrate the
termproportional to e p p E k E li n1 2+ + - -m l( ) , we take the contour shown infigureG1(a) so that the exponential factor
does not diverge. For the same reason, for that proportional to e k li n we take the contour offigureG1(b). As t and
C havefirst-order poles, when integrating each pole, we just have to evaluate the rest of the function at the pole.
Then, t andC give terms proportional to e ln

tg-∣ ∣ and e ln
Cg-∣ ∣ , respectively.
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Nowwe consider the contribution to the integral of thewave packets, kkn
f ( )¯ .We choose Lorentzian

functions, with a simple pole at k k in s= -¯ (see equation (7)). In consequence, we have a termproportional to
e ls- . Lastly, the denominator in the first termhas a polewith zero imaginary part. Therefore, its contribution
does not decaywith l. Importantly enough, this pole enforces single-photon energy conservation giving single-
photon amplitudes, A A1, 2,ål n l l m  .

Finally, let usmention that we do not need to impose that that t kmn ( ) and Cp p k kn n1 2 mn( )¯ have simple poles.
Higher order poles, by virtue of theCauchy Integral formula for the derivatives, alsowould yield exponential
decay.
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