4 research outputs found
The Comet Interceptor Mission
Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ÎV capability of 600Â ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000Â km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000Â km distance, probes B1 and B2 will follow different chords through the coma at distances of 850Â km and 400Â km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule
The Comet Interceptor Mission
Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESAâs F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ÎV capability of 600 msâ1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes â B1, provided by the Japanese space agency, JAXA, and B2 â that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the missionâs science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule
PLATO Fast Front End Electronics (F-FEE) - performance results of the engineering model
The Fast Front End Electronic (F-FEE) is a unit of the payload for the PLATO ESA mission. PLATO aims at finding and characterising a large number of extra solar planetary systems. In order to achieve its scientific objectives, PLATO relies on the analysis of continuous time series of high precision photometric measurements of stellar fluxes.
The scientific payload of PLATO is based on a multi-telescope approach, involving a set of 24 "normal" cameras working at a cadence of 25s optimized to monitor stars fainter than magnitude 8 (photometry on saturated stars down to magnitude 4 will be possible), plus two "fast" cameras working at a cadence of 2.5s, and observing stars in the V range from 4 to 8. Beside providing star brightness measurements for bright stars, the "fast" cameras also work as fine guidance sensors for the attitude control system of the Spacecraft. Each "fast" camera is equipped with 4 CCDs with 4510x2255 light sensitive pixels each, working in frame transfer mode.
In view of the instrument development an Engineering Model (EM) of the F-FEE has been manufactured, assembled and tested. The performance tests have been conducted using artificially generated CCD signals as well as real CCDs, proving the capability of the electronics to satisfy the demanding requirements to fine guidance but also science requirements of the PLATO mission
The Venus emissivity mapper: implementation for flight on the NASA VERITAS mission
In June 2020 NASA has selected the VERTIAS Discovery mission to Venus for flight. The Venus Emissivity Mapper (VEM) provided by DLR together with the VISAR radar system provided by JPL are the core payload of the mission. VEM is the first flight instrument designed with a focus on mapping the surface of Venus using atmospheric windows around 1 ÎŒm wavelength. It will provide a global map of surface composition by observing with six narrow band filters from 0.86 to 1.18 ÎŒm. Continuous observation of Venusâ thermal emission will place tight constraints on current day volcanic activity. Eight additional channels provide measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics and permit accurate correction of atmospheric interference on the surface data. Combining VEM with a high-resolution radar mapper on the NASA VERITAS and ESA EnVision missions will provide key insights in the divergent evolution of Venus. After several years of pre-development including the setup of a laboratory prototype the implementation for flight has started with the qualification of the flight detectors, the review of all requirements flowdowns as well as the finalizing of spacecraft interfaces