23 research outputs found

    NGS y Metagenómica

    Get PDF
    The Next Generation Sequencing (NGS) allows to sequence the whole genome of an organism, compared to Maxam and Gilbert and Sanger sequencing that only allow to sequence, hardly, a single gene. Removing the separation of DNA fragments by electrophoresis, and the development of techniques that let the parallelization (analysing simultaneously several DNA fragments) have been crucial for the improvements of this process. The new companies in this ambit, Roche and Illumina, bet for different protocols to achieve these goals. Illumina bets for the sequencing by synthesis (SBS), requiring the library preparation and the use of adapters. Likewise, Illumina has replaced Roche because its lower rate of misincorporation, making it ideal for studies of genetic variability, transcriptomic, epigenomic, and metagenomic, in which this study will focus. However, it is noteworthy that the last progress in sequencing is carried out by the third generation sequencing, using nanotechnology to design small sequencers that sequence the whole genome of an organism quickly and inexpensively. Moreover, they provide more reliable data than current systems because they sequence a single molecule, solving the problem of synchronisation. In this way, PacBio and Nanopore allow a great progress in diagnostic and personalized medicine. Metagenomics provide to make a qualitative and quantitative analysis of the various species present in a sample. The main advantage of this technique is the no necessary isolation and growth of the species, allowing the analysis of nonculturable species. The Illumina protocol studies the variable regions of the 16S rRNA gene, which contains variable and not variables regions providing a phylogenetic classification. Therefore, metagenomics is a topic of interest to know the biodiversity of complex ecosystems and to study the microbiome of patients given the high involvement with certain microbial profiles on the condition of certain metabolic diseases

    Novel SFRP2 DNA Methylation Profile Following Neoadjuvant Therapy in Colorectal Cancer Patients with Different Grades of BMI

    Get PDF
    The relationship between body weight and different cancers is now well-recognized and among such cancers, colorectal cancer (CRC) is reported most frequently. Our group recently published findings, through an epigenome-wide association study, suggesting that body mass index (BMI) could act as a relevant risk factor in the CRC. In addition, aberrant SFRP2 methylation is one of the major mechanisms for Wnt signaling activation in CRC. Conversely, neoadjuvant chemo-radiotherapy appears to alter the rectal cancer epigenome. This study was aimed to evaluate the effect of obesity, measured by BMI, on the methylation of SFRP2 in tumor samples of patients with CRC. Non-treated CRC patients and CRC patients treated with pre-operative neoadjuvant therapy from 2011 to 2013 were included and classified by BMI 25.0 kg/m2. SFRP2 DNA methylation in tumor samples was measured by pyrosequencing. Our findings suggest a possible interaction between SFRP2 methylation levels and BMI in CRC tumor samples. The correlation of SFRP2 hypomethylation with an elevated BMI was stronger within the non-treated CRC patient group than within the treated CRC patient group. We have successfully demonstrated that the beneficial association of tumor SFRP2 hypomethylation is dependent on patient BMI in non-treated CRC, suggesting a possible tumor suppressor role for SFRP2 in overweight and obese patients. Additional studies of clinical pathologies would be necessary to strengthen these preliminary resultsThis study was supported by “Centros de Investigación En Red” (CIBER, CB06/03/0018) of the “Instituto de Salud Carlos III” (ISCIII) and a grant from ISCIII (PI8/01399) and it was co-financed by the European Regional Development Fund (FEDER). M.M.G. was the recipient of the Nicolas Monardes Program from the “Servicio Andaluz de Salud, Junta de Andalucía”, Spain (RC-0001-2018 and C-0029-2014). S.M. was the recipient of the Nicolas Monardes Program from the “Servicio Andaluz de Salud, Junta de Andalucía”, Spain (C-0050-2017). A.B.C. was funded by a research contract “Miguel Servet” (CP17/00088) from the ISCIII. A.C.-M. was recipient of an FPU grant from Education Ministry, Madrid, SpainS

    Sometidos a esclavitud: los africanos y sus descendientes en el Caribe Hispano

    Get PDF
    Con autorización de la editorial para este libro. La edición estuvo a cargo de Consuelo Naranjo Orovio.Sometidos a esclavitud: los africanos y sus descendientes en el Caribe hispano contribuye al estudio de la historia Atlántica en la que la esclavización de millones de africanos fue uno de principales factores que generaron e impulsaron el desarrollo del mundo moderno. La formación de redes comerciales, compañías mercantiles y negocios particulares contribuyeron a conectar mundos y a hacerlos interdependientes. Junto a las mercancías, individuos y productos, viajaron ideas y tradiciones que fueron tejiendo la historia atlántica. En ella, la esclavización, los esclavizados y los afrodescendientes fueron y son partes destacadas, como muestra su legado presente de las culturas americanas. Estos estudios de la obra se suman a investigaciones que, desde distintos países, proyectos, grupos de investigación y enfoques, se están realizando sobre un tema tan rico, diverso y complejo como es la esclavitud atlántica. El espacio temporal que recorren los capítulos se prolonga en el tiempo como lo hizo la trata y el sistema esclavista. Lo mismo ocurre con los territorios afectados por este fenómeno. Su cartografía es una larga sombra que se expande por el mundo atlántico desde el siglo XVI hasta las últimas décadas del siglo XIX. Distintos actores y puntos de África, Europa y América emergen como protagonistas del sometimiento, el comercio y la esclavización de más de doce millones y medio de africanos.Este libro se inserta en el proyecto europeo Connected Worlds: The Caribbean, Origin of Modern World. This project has received funding from the European Union´s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement Nº 823846. This project is directed by professor Consuelo Naranjo Orovio, Institute of History-CSIC.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Keto microbiota: A powerful contributor to host disease recovery.

    No full text
    Gut microbiota (GM) is a key contributor to host metabolism and physiology. Data generated on comparing diseased and healthy subjects have reported changes in the GM profile between both health states, suggesting certain bacterial composition could be involved in pathogenesis. Moreover, studies reported that reshaping of GM could contribute actively to disease recovery. Interestingly, ketogenic diets (KD) have emerged recently as new economic dietotherapeutic strategy to combat a myriad of diseases (refractory epilepsy, obesity, cancer, neurodegenerative diseases…). KD, understood in a broad sense, refers to whatever dietetic approximation, which causes physiological ketosis. Therefore, high fat-low carbs diets, fasting periods or caloric restriction constitute different strategies to produce an increase of main ketones bodies, acetoacetate and β-hydroxybutyrate, in blood. Involved biological mechanisms in ketotherapeutic effects are still to be unravelled. However, it has been pointed out that GM remodelling by KD, from now on "keto microbiota", may play a crucial role in patient response to KD treatment. In fact, germ-free animals were resistant to ketotherapeutic effects; reinforcing keto microbiota may be a powerful contributor to host disease recovery. In this review, we will comment the influence of gut microbiota on host, as well as, therapeutic potential of ketogenic diets and keto microbiota to restore health status. Current progress and limitations will be argued too. In spite of few studies have defined applicability and mechanisms of KD, in the light of results, keto microbiota might be a new useful therapeutic agent

    The Expression/Methylation Profile of Adipogenic and Inflammatory Transcription Factors in Adipose Tissue Are Linked to Obesity-Related Colorectal Cancer.

    No full text
    Obesity is well accepted as crucial risk factor that plays a critical role in the initiation and progression of colorectal cancer (CRC). More specifically, visceral adipose tissue (VAT) in people with obesity could produce chronic inflammation and an altered profile expression of key transcription factors that promote a favorable microenvironment to colorectal carcinogenesis. For this, the aim of this study was to explore the relationship between adipogenic and inflammatory transcription factors in VAT from nonobese, obese, and/or CRC patients. To test this idea, we studied the expression and methylation of CCAAT-enhancer binding protein type alpha (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) in VAT from non-obese control, non-obese CRC subjects, overweight/obese control, and overweight/obese CRC patients and their correlation with anthropometric and biochemical variables. We found decreased expression of C/EBP-α in overweight/obese CRC patients in comparison with overweight/obese control subjects. PGC-1α and NF-κB were overexpressed in CRC patients independently of the BMI. NF-κB promoter was hypomethylated in overweight/obese CRC patients when compared to overweight/obese control individuals. In addition, multiple significant correlations between expression, methylation, and biochemical parameters were found. Finally, linear regression analysis showed that the expression of C/EBP-α and NF-κB and that NF-κB methylation were associated with CRC and able to explain up to 55% of CRC variability. Our results suggest that visceral adipose tissue may be a key factor in tumor development and inflammatory state. We propose C/EBP-α, PGC-1α and NF-κB to be interesting candidates as potential biomarkers in adipose tissue for CRC patients

    Transcriptional Analysis of FOXO1, C/EBP-α and PPAR-γ2 Genes and Their Association with Obesity-Related Insulin Resistance.

    No full text
    Obesity is associated with several comorbid disorders, ranging from cardiovascular diseases to insulin resistance. In this context, visceral adipose tissue (VAT) seems to have a close connection with insulin resistance. In our study, we hypothesized that the expression profile of key adipogenic genes, such as proliferator-activated receptor γ type 2 (PPAR-γ2), CCAAT/enhancer-binding protein type α (C/EBP-α), and forkhead box protein class O type 1 (FOXO1) in VAT should shed light on their association with obesity-related insulin resistance. To test this idea, we studied the expression profile of C/EBP-α, FOXO1 and PPAR-γ2 in VAT from non-obese individuals, and low insulin (LIR-MO) and high insulin morbidly obese (HIR-MO) subjects, through a combination of RT-qPCR, co-immunoprecipitation, ELISA, Western blot analysis and EMSA assays. Our results show that C/EBP-α and PPAR-γ2 were down-expressed in HIR-MO individuals, while FOXO1 was overexpressed. In addition, the PPAR-γ2-RXR-α heterodimer showed weak activity and bound weakly to the putative IGFBP-2-PPRE promoter sequence in VAT from HIR-MO subjects when compared with LIR-MO individuals. These results show that PPAR-γ2, C/EBP-α, FOXO1 and IGFBP-2 have a close relationship with insulin resistance in VAT of morbidly obese individuals

    Gut Microbiota Composition Is Associated With the Global DNA Methylation Pattern in Obesity.

    No full text
    Objective: Obesity and obesity-related metabolic diseases are characterized by gut microbiota and epigenetic alterations. Recent insight has suggested the existence of a crosstalk between the gut microbiome and the epigenome. However, the possible link between alterations in gut microbiome composition and epigenetic marks in obesity has been not explored yet. The aim of this work is to establish a link between the gut microbiota and the global DNA methylation profile in a group of obese subjects and to report potential candidate genes that could be epigenetically regulated by gut microbiota in adipose tissue. Methods: Gut microbiota composition was analyzed in DNA stool samples from 45 obese subjects by 16S ribosomal RNA (rRNA) gene sequencing. Twenty patients were selected based on their Bacteroidetes-to-Firmicutes ratio (BFR): HighBFR group (BFR > 2.5, n = 10) and LowBFR group (BFR 2.5, n = 10) and LowBFR group (BF
    corecore