2,503 research outputs found

    THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS

    Get PDF
    Indexación: Web of Science; Scopus.We present the first results of the High Cadence Transient Survey (HiTS), a survey for which the objective is to detect and follow-up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera and a custom pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014, and 2015 campaigns, we detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting magnitudes from our observational campaigns, we measured the expected recovery fraction of randomly injected SN light curves, which included SBO optical peaks produced with models from Tominaga et al. (2011) and Nakar & Sari (2010). From this analysis, we cannot rule out the models from Tominaga et al. (2011) under any reasonable distributions of progenitor masses, but we can marginally rule out the brighter and longer-lived SBO models from Nakar & Sari (2010) under our best-guess distribution of progenitor masses. Finally, we highlight the implications of this work for future massive data sets produced by astronomical observatories, such as LSST.http://iopscience.iop.org/article/10.3847/0004-637X/832/2/155/meta;jsessionid=76BDFFFE378003616F6DBA56A9225673.c4.iopscience.cld.iop.or

    Full left ventricular coverage is essential for the accurate quantification of the area- at- risk by T1 and T2 mapping

    Get PDF
    T2-weighted cardiovascular magnetic resonance (CMR) using a 3-slice approach has been shown to accurately quantify the edema-based area-at-risk (AAR) in ST-segment elevation myocardial infarction (STEMI). We aimed to compare the performance of a 3-slice approach to full left ventricular (LV) coverage for the AAR by T1 and T2 mapping and MI size. Forty-eight STEMI patients were prospectively recruited and underwent a CMR at 4 ± 2 days. There was no difference between the AARfull LV and AAR3-slices by T1 (P = 0.054) and T2-mapping (P = 0.092), with good correlations but small biases and wide limits of agreements (T1-mapping: N = 30, R2 = 0.85, bias = 1.7 ± 9.4% LV; T2-mapping: N = 48, R2 = 0.75, bias = 1.7 ± 12.9% LV). There was also no significant difference between MI size3-slices and MI sizefull LV (P = 0.93) with an excellent correlation between the two (R2 0.92) but a small bias of 0.5% and a wide limit of agreement of ±7.7%. Although MSI was similar between the 2 approaches, MSI3-slices performed poorly when MSI was <0.50. Furthermore, using AAR3-slices and MI sizefull LV resulted in ‘negative’ MSI in 7/48 patients. Full LV coverage T1 and T2 mapping are more accurate than a 3-slice approach for delineating the AAR, especially in those with MSI < 0.50 and we would advocate full LV coverage in future studies

    Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass

    Get PDF
    Aims/hypothesis Pancreatic beta cells secrete insulin to maintain glucose homeostasis, and beta cell failure is a hallmark of type 2 diabetes. Glucose triggers insulin secretion in beta cells via oxidative mitochondrial pathways. However, it also feeds mitochondrial anaplerotic pathways, driving citrate export and cytosolic malonyl-CoA production by the acetyl-CoA carboxylase 1 (ACC1) enzyme. This pathway has been proposed as an alternative glucose-sensing mechanism, supported mainly by in vitro data. Here, we sought to address the role of the beta cell ACC1-coupled pathway in insulin secretion and glucose homeostasis in vivo. Methods Acaca, encoding ACC1 (the principal ACC isoform in islets), was deleted in beta cells of mice using the Cre/loxP system. Acaca floxed mice were crossed with Ins2cre mice (βACC1KO; life-long beta cell gene deletion) or Pdx1creER mice (tmx-βACC1KO; inducible gene deletion in adult beta cells). Beta cell function was assessed using in vivo metabolic physiology and ex vivo islet experiments. Beta cell mass was analysed using histological techniques. Results βACC1KO and tmx-βACC1KO mice were glucose intolerant and had defective insulin secretion in vivo. Isolated islet studies identified impaired insulin secretion from beta cells, independent of changes in the abundance of neutral lipids previously implicated as amplification signals. Pancreatic morphometry unexpectedly revealed reduced beta cell size in βACC1KO mice but not in tmx-βACC1KO mice, with decreased levels of proteins involved in the mechanistic target of rapamycin kinase (mTOR)-dependent protein translation pathway underpinning this effect. Conclusions/interpretation Our study demonstrates that the beta cell ACC1-coupled pathway is critical for insulin secretion in vivo and ex vivo and that it is indispensable for glucose homeostasis. We further reveal a role for ACC1 in controlling beta cell growth prior to adulthood

    Personality disorders and psychosocial problems in a group of participants to therapeutic processes for people with severe social disabilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homeless people have high dropout rates when they participate in therapeutic processes. The causes of this failure are not always known. This study investigates whether dropping-out is mediated by personality disorders or whether psychosocial problems are more important.</p> <p>Method</p> <p>Eighty-nine homeless people in a socio-laboral integration process were assessed. An initial interview was used, and the MCMI II questionnaire was applied to investigate the presence of psychosocial disorders (DSM-IV-TR axis IV). This was designed as an <it>ex post-facto </it>prospective study.</p> <p>Results</p> <p>Personality disorders were very frequent among the homeless people examined. Moreover, the high index of psychosocial problems (axis IV) in this population supported the proposal that axis IV disorders are influential in failure to complete therapy.</p> <p>Conclusion</p> <p>The outcomes of the study show that the homeless people examined presented with more psychopathological symptoms, in both axis II and axis IV, than the general population. This supports the need to take into account the comorbidity between these two types of disorder among homeless people, in treatment and in the development of specific intervention programs. In conclusion, the need for more psychosocial treatments addressing the individual problems of homeless people is supported.</p

    How the weather affects the pain of citizen scientists using a smartphone app

    Get PDF
    Patients with chronic pain commonly believe their pain is related to the weather. Scientific evidence to support their beliefs is inconclusive, in part due to difficulties in getting a large dataset of patients frequently recording their pain symptoms during a variety of weather conditions. Smartphones allow the opportunity to collect data to overcome these difficulties. Our study Cloudy with a Chance of Pain analysed daily data from 2658 patients collected over a 15-month period. The analysis demonstrated significant yet modest relationships between pain and relative humidity, pressure and wind speed, with correlations remaining even when accounting for mood and physical activity. This research highlights how citizen-science experiments can collect large datasets on real-world populations to address long-standing health questions. These results will act as a starting point for a future system for patients to better manage their health through pain forecasts

    A Micro-Thermal Sensor for Focal Therapy Applications

    Get PDF
    There is an urgent need for sensors deployed during focal therapies to inform treatment planning and in vivo monitoring in thin tissues. Specifically, the measurement of thermal properties, cooling surface contact, tissue thickness, blood flow and phase change with mm to sub mm accuracy are needed. As a proof of principle, we demonstrate that a micro-thermal sensor based on the supported “3ω� technique can achieve this in vitro under idealized conditions in 0.5 to 2 mm thick tissues relevant to cryoablation of the pulmonary vein (PV). To begin with “3ω� sensors were microfabricated onto flat glass as an idealization of a focal probe surface. The sensor was then used to make new measurements of ‘k’ (W/m.K) of porcine PV, esophagus, and phrenic nerve, all needed for PV cryoabalation treatment planning. Further, by modifying the sensor use from traditional to dynamic mode new measurements related to tissue vs. fluid (i.e. water) contact, fluid flow conditions, tissue thickness, and phase change were made. In summary, the in vitro idealized system data presented is promising and warrants future work to integrate and test supported “3ω� sensors on in vivo deployed focal therapy probe surfaces (i.e. balloons or catheters)

    Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN

    Get PDF
    The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time

    Radiation background with the CMS RPCs at the LHC

    Get PDF
    The Resistive Plate Chambers (RPCs) are employed in the CMS Experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This article presents results of the radiation background measurements performed with the 2011 and 2012 proton-proton collision data collected by CMS. Emphasis is given to the measurements of the background distribution inside the RPCs. The expected background rates during the future running of the LHC are estimated both from extrapolated measurements and from simulation

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
    corecore