226 research outputs found

    Spatial trends on an ungrazed West Cumbrian saltmarsh of surface contamination by selected radionuclides over a 25 year period

    Get PDF
    Long term spatial and temporal variations in radionuclide activity have been measured in a contaminated ungrazed saltmarsh near Ravenglass, Cumbria. Over a twenty–five year period there has been a decrease in activity concentration with 106Ru and 137Cs showing the highest rate of change followed by Pu alpha and 241Am. A number of factors contribute to the reduction with time; including radiological half lives, discharge and remobilisation. For 241Am the lower reduction rate is partially due to ingrowth from 241Pu and partially as a result of transport of sediment from the offshore Irish Sea mud patch. Considerable spatial variation for the different radionuclides was observed, which with time became less defined. The highest activity concentrations of long-lived radionuclides were in low energy areas, typically where higher rates of sedimentation and vegetation occurred. The trend was reversed for the shorter lived radionuclide, 106Ru, with higher activity concentrations observed in high energy areas where there was frequent tidal inundation. Surface scrape samples provide a pragmatic, practical method of measuring sediment contamination over large areas and is a sampling approach adopted by most routine environmental monitoring programs, but it does not allow for interpretation of the effect of variation in sedimentation rates. This paper proposes a method for calculating indicative sedimentation rates across the saltmarsh using surface scrape data, which produces results consistent with values experimentally obtained

    Windbreaks in North American Agricultural Systems

    Get PDF
    Windbreaks are a major component of successful agricultural systems throughout the world. The focus of this chapter is on temperate-zone, commercial, agricultural systems in North America, where windbreaks contribute to both producer profitability and environmental quality by increasing crop production while simultaneously reducing the level of off-farm inputs. They help control erosion and blowing snow, improve animal health and survival under winter conditions, reduce energy consumption of the farmstead unit, and enhance habitat diversity, providing refuges for predatory birds and insects. On a larger landscape scale windbreaks provide habitat for various types of wildlife and have the potential to contribute significant benefits to the carbon balance equation, easing the economic burdens associated with climate change. For a windbreak to function properly, it must be designed with the needs of the landowner in mind. The ability of a windbreak to meet a specific need is determined by its structure: both external structure, width, height, shape, and orientation as well as the internal structure; the amount and arrangement of the branches, leaves, and stems of the trees or shrubs in the windbreak. In response to windbreak structure, wind flow in the vicinity of a windbreak is altered and the microclimate in sheltered areas is changed; temperatures tend to be slightly higher and evaporation is reduced. These types of changes in microclimate can be utilized to enhance agricultural sustainability and profitability. While specific mechanisms of the shelter response remain unclear and are topics for further research, the two biggest challenges we face are: developing a better understanding of why producers are reluctant to adopt windbreak technology and defining the role of woody plants in the agricultural landscape

    Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces.</p> <p>A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied.</p> <p>Methods</p> <p>The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed.</p> <p>Results</p> <p>The mean loads to failure for each group were 295,44 N (Group 1; 9 Ă— 23 screw), 564,05 N (Group 2; 9 Ă— 28), 614,95 N (Group 3; 9 Ă— 35), 651,14 N (Group 4; 10 Ă— 28) and 664,99 (Group 5; 10 Ă— 35). No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P < 0.001).</p> <p>Conclusions</p> <p>Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm) do not achieve optimal fixation and should be implanted only with special requirements.</p

    Torsional stability of interference screws derived from bovine bone - a biomechanical study

    Get PDF
    Introduction: It has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations. Methods: Three intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course. Results: Patients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes. Conclusions: Carriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery

    Biomechanics and anterior cruciate ligament reconstruction

    Get PDF
    For years, bioengineers and orthopaedic surgeons have applied the principles of mechanics to gain valuable information about the complex function of the anterior cruciate ligament (ACL). The results of these investigations have provided scientific data for surgeons to improve methods of ACL reconstruction and postoperative rehabilitation. This review paper will present specific examples of how the field of biomechanics has impacted the evolution of ACL research. The anatomy and biomechanics of the ACL as well as the discovery of new tools in ACL-related biomechanical study are first introduced. Some important factors affecting the surgical outcome of ACL reconstruction, including graft selection, tunnel placement, initial graft tension, graft fixation, graft tunnel motion and healing, are then discussed. The scientific basis for the new surgical procedure, i.e., anatomic double bundle ACL reconstruction, designed to regain rotatory stability of the knee, is presented. To conclude, the future role of biomechanics in gaining valuable in-vivo data that can further advance the understanding of the ACL and ACL graft function in order to improve the patient outcome following ACL reconstruction is suggested

    Spatial trends on an ungrazed West Cumbrian saltmarsh of surface contamination by selected radionuclides over a 25 year period

    Get PDF
    Long term spatial and temporal variations in radionuclide activity have been measured in a contaminated ungrazed saltmarsh near Ravenglass, Cumbria. Over a twenty–five year period there has been a decrease in activity concentration with 106Ru and 137Cs showing the highest rate of change followed by Pu alpha and 241Am. A number of factors contribute to the reduction with time; including radiological half lives, discharge and remobilisation. For 241Am the lower reduction rate is partially due to ingrowth from 241Pu and partially as a result of transport of sediment from the offshore Irish Sea mud patch. Considerable spatial variation for the different radionuclides was observed, which with time became less defined. The highest activity concentrations of long-lived radionuclides were in low energy areas, typically where higher rates of sedimentation and vegetation occurred. The trend was reversed for the shorter lived radionuclide, 106Ru, with higher activity concentrations observed in high energy areas where there was frequent tidal inundation. Surface scrape samples provide a pragmatic, practical method of measuring sediment contamination over large areas and is a sampling approach adopted by most routine environmental monitoring programs, but it does not allow for interpretation of the effect of variation in sedimentation rates. This paper proposes a method for calculating indicative sedimentation rates across the saltmarsh using surface scrape data, which produces results consistent with values experimentally obtained
    • …
    corecore