7 research outputs found
Inverse Kinematic Assessment of Rehabilitative Therapy in Children Using Orthotics
Pathologic movement patterns are characterized by abnormal kinematics that alter how muscles support the body during walking. Individual muscles are often the target of interventions with physical therapy and surgery alike, yet the tools to assess individual muscles clinically remain limited. The aim of this study is to assess OpenSim as a clinical tool for individualized rehabilitative evaluation of children using orthotics. This anatomic and kinematic modeling study was focused on pre- and post-treatment assessment of gait characteristics in fourteen children using orthotic devices. A range of four to twelve acceptable gait capture trials was collected for each child before therapy began and again after four weeks of treatment. The effects of therapy were significant in four of the lower extremity muscle analyses, three of the temporal parameters, and eighteen of the spatial parameters. All muscle lengths showed less deviation from normal values after physical therapy across all subjects. Results of this study support the further evaluation of OpenSim as a tool to improve quantitative assessment of musculoskeletal dynamics during the course of rehabilitative therapy in children using orthotics
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.
RESULTS:
A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization.
CONCLUSIONS:
The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
A Roadmap for HEP Software and Computing R&D for the 2020s
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe
Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells.
The aryl hydrocarbon receptor (AhR) participates in the differentiation of mouse regulatory T cells (T(reg) cells) and interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells), but its role in human T cell differentiation is unknown. We investigated the role of AhR in the differentiation of human induced T(reg) cells (iT(reg) cells). We found that AhR activation promoted the differentiation of CD4(+)Foxp3(−) T cells, which produce IL-10 and control responder T cells through granzyme B. However, activation of AhR in the presence of transforming growth factor-β1 induced Foxp3(+) iT(reg) cells, which suppress responder T cells through the ectonucleoside triphosphate diphosphohydrolase CD39. The induction of functional Foxp3(+) iT(reg) cells required coordinated action of the transcriptional regulators Smad1 and Aiolos. Thus, AhR is a potential target through which functional iT(reg) cells could be induced in human autoimmune disorders
A Roadmap for HEP Software and Computing R&D for the 2020s
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade