1,851 research outputs found

    Complex organic molecules in strongly UV-irradiated gas

    Full text link
    We investigate the presence of COMs in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre line survey using the IRAM30m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5 arcsec resolution maps of the H2CO 5(1,5)-4(1,4) and C18O 3-2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, H13-2CO, and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-LTE LVG excitation analysis for molecules with known collisional rate coefficients, suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150-250 K and Td > 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40-50 K). We find a HCO/H2CO/CH3OH = 1/5/3 abundance ratio. These ratios are different from those inferred in hot cores and shocks.Comment: 29 pages, 22 figures, 17 tables. Accepted for publication in A&A (abstract abridged

    Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines

    Full text link
    A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density (n_e) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules. We determine n_e in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [13CII] hyperfine line observations. We detect 12 mmCRLs (including alpha, beta, and gamma transitions) observed with the IRAM 30m telescope, at ~25'' angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR. These lines trace the C+/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent HII region. This is readily seen from their narrow line profiles (dv=2.6+/-0.4 km/s) and line peak LSR velocities (v_LSR=+10.7+/-0.2 km/s). Optically thin [13CII] hyperfine lines and molecular lines - emitted close to the DF by trace species such as reactive ions CO+ and HOC+ - show the same line profiles. We use non-LTE excitation models of [13CII] and mmCRLs and derive n_e = 60-100 cm^-3 and T_e = 500-600 K toward the DF. The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain P_th > (2-4)x10^8 cm^-3 K assuming that the electron abundance is equal or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.Comment: Accepted for publication in A&A Letters (includes language editor corrections

    In-plane/out-of-plane disorder influence on the magnetic anisotropy of Fe1-yMnyPt-L10 bulk alloy

    Get PDF
    The random substitution of a non-magnetic species instead of Fe atoms in FePt-L10 bulk alloy will permit to tune the magnetic anisotropy energy of this material. We have performed by means of first principles calculations a study of Fe1-yMnyPt-L10 (y = 0.0, 0.08, 0.12, 0.17, 0.22, and 0.25) bulk alloy for a fixed Pt concentration when the Mn species have ferro-/antiferromagnetic (FM,AFM) alignment at the same(different) atomic plane(s). This substitution will promote several in-plane lattice values for a fixed amount of Mn. Charge hybridization will change compared to the FePt-L10 bulk due to this lattice variation leading to a site resolved magnetic moment modification. We demonstrate that this translates into a total magnetic anisotropy reduction for the AFM phase and an enhancement for the FM alignment. Several geometric configurations were taken into account for a fixed Mn concentration because of different possible Mn positions in the simulation cell

    Dispersal of the monarch butterfly (Danaus plexippus) over southern Spain from its breeding grounds

    Get PDF
    Dispersión de la mariposa monarca (Danaus plexippus) en el sur de España desde las zonas de apareamiento Durante el período comprendido entre los años 2000 y 2016, se detectaron mariposas monarca en 127 lugares fuera de las zonas costeras donde se reproducen habitualmente en el sur de la península ibérica. Estos datos se obtuvieron en verano e invierno, coincidiendo con la máxima abundancia de individuos y la mayor proporción de sitios ocupados en sus zonas de reproducción cercanas al estrecho de Gibraltar. Los individuos que se dispersan no tienen ninguna posibilidad de establecer nuevas colonias en estos sitios porque las plantas en las que ponen los huevos no crecen en las localidades en las que fueron detectados. Sin embargo, estos movimientos de dispersión podrían ser la causa de la colonización de plantas alimentarias que crecen en otras zonas de la península ibérica y en otros países del Mediterráneo.From 2000–2016, monarch butterflies were detected at 127 locations away from their usual coastal breeding areas in the south of the Iberian peninsula. These findings were recorded in the summer–autumn period, coinciding with the highest abundance of individuals and the highest proportion of patches occupied in their reproduction areas near the Strait of Gibraltar. These dispersing individuals have no chance of successfully establishing new colonies at these sites because the food plants for egg laying do not grow in the localities where they were detected. However, these dispersive movements could be the source of their successful colonisation on food plants growing in other areas of the Iberian peninsula and in other Mediterranean countries.Dispersión de la mariposa monarca (Danaus plexippus) en el sur de España desde las zonas de apareamiento Durante el período comprendido entre los años 2000 y 2016, se detectaron mariposas monarca en 127 lugares fuera de las zonas costeras donde se reproducen habitualmente en el sur de la península ibérica. Estos datos se obtuvieron en verano e invierno, coincidiendo con la máxima abundancia de individuos y la mayor proporción de sitios ocupados en sus zonas de reproducción cercanas al estrecho de Gibraltar. Los individuos que se dispersan no tienen ninguna posibilidad de establecer nuevas colonias en estos sitios porque las plantas en las que ponen los huevos no crecen en las localidades en las que fueron detectados. Sin embargo, estos movimientos de dispersión podrían ser la causa de la colonización de plantas alimentarias que crecen en otras zonas de la península ibérica y en otros países del Mediterráneo

    The chemistry and spatial distribution of small hydrocarbons in UV-irradiated molecular clouds: the Orion Bar PDR

    Full text link
    We study the spatial distribution and chemistry of small hydrocarbons in the Orion Bar PDR. We used the IRAM-30m telescope to carry out a millimetre line survey towards the Orion Bar edge, complemented with ~2'x2' maps of the C2H and c-C3H2 emission. We analyse the excitation of the detected hydrocarbons and constrain the physical conditions of the emitting regions with non-LTE radiative transfer models. We compare the inferred column densities with updated gas-phase photochemical models including 13CCH and C13CH isotopomer fractionation. ~40% of the lines in the survey arise from hydrocarbons (C2H, C4H, c-C3H2, c-C3H, C13CH, 13CCH, l-C3H and l-H2C3). We detect new lines from l-C3H+ and improve its rotational spectroscopic constants. Anions or deuterated hydrocarbons are not detected: [C2D]/[C2H]<0.2%, [C2H-]/[C2H]<0.007% and [C4H-]/[C4H]<0.05%. Our gas-phase models can reasonably match the observed column densities of most hydrocarbons (within factors <3). Since the observed spatial distribution of the C2H and c-C3H2 emission is similar but does not follow the PAH emission, we conclude that, in high UV-flux PDRs, photodestruction of PAHs is not a necessary requirement to explain the observed abundances of the smallest hydrocarbons. Instead, gas-phase endothermic reactions (or with barriers) between C+, radicals and H2 enhance the formation of simple hydrocarbons. Observations and models suggest that the [C2H]/[c-C3H2] ratio (~32 at the PDR edge) decreases with the UV field attenuation. The observed low cyclic-to-linear C3H column density ratio (<3) is consistent with a high electron abundance (Xe) PDR environment. In fact, the poorly constrained Xe gradient influences much of the hydrocarbon chemistry in the more UV-shielded gas. We propose that reactions of C2H isotopologues with 13C+ and H atoms can explain the observed [C13CH]/[13CCH]=1.4(0.1) fractionation level.Comment: 30 pages, 23 figures, 15 tables. Accepted for publication in A&A (English edited, abstract abridged

    Control of the Light Interaction in a Semiconductor Nanoparticle Dimer Through Scattering Directionality

    Get PDF
    11 págs.; 4 figs.; 1 tab.Dimers of nanoparticles are very interesting for several devices due to the possibility of obtaining intense light concentrations in the gap between them. A dynamic control of this interaction to obtain either the maximum or minimum light through interferential effects could be also relevant for a multitude of devices such as chemical sensors or all-optical devices for interchip/intrachip communications. Semiconductor nanoparticles satisfying Kerker conditions present an anisotropic scattering distribution with a minimum in either the forward or the backward direction and prominent scattering in the contrary direction. The reduction or enhancement of the electromagnetic field in a certain direction can minimize or maximize the interaction with neighboring nanoparticles. In this paper, we consider a dimer of nanoparticles such that each component satisfies each one of the Kerker conditions. Depending on the arrangement of the nanoparticles with respect to the impinging light direction, we can produce a minimum or a maximum of the electric field between them, reducing or maximizing the interferential effects. The strong dependence of the directional conditions with external conditions, such as the incident wavelength, can be used to dynamically control the light concentration in the gap. Ó 2016 IEEEThis work was supported in part by the Ministerio de Economía y Competitividad of Spain under Grant TEC2013—50138—EXP and Grant TEC2013-47342-C2-2-R, by the RD Program of the Comunidad de Madrid under Grant SINFOTON S2013/MIT—2790, and by COST Action IC1208.Peer Reviewe
    • …
    corecore