61 research outputs found

    Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autoantibodies against glutamate decarboxylase-65 (GAD<sub>65</sub>Abs) are thought to be a major immunological tool involved in pathogenic autoimmunity development in various diseases. GAD<sub>65</sub>Abs are a sensitive and specific marker for type 1 diabetes (T1D). These autoantibodies can also be found in 6-10% of patients classified with type 2 diabetes (T2D), as well as in 1-2% of the healthy population. The latter individuals are at low risk of developing T1D because the prevalence rate of GAD<sub>65</sub>Abs is only about 0.3%. It has, therefore, been suggested that the antibody binding to GAD<sub>65 </sub>in these three different GAD<sub>65</sub>Ab-positive phenotypes differ with respect to epitope specificity. The specificity of reactive oxygen species modified GAD<sub>65 </sub>(ROS-GAD<sub>65</sub>) is already well established in the T1D. However, its association in secondary complications of T1D has not yet been ascertained. Hence this study focuses on identification of autoantibodies against ROS-GAD<sub>65 </sub>(ROS-GAD<sub>65</sub>Abs) and quantitative assays in T1D associated complications.</p> <p>Results</p> <p>From the cohort of samples, serum autoantibodies from T1D retinopathic and nephropathic patients showed high recognition of ROS-GAD<sub>65 </sub>as compared to native GAD<sub>65 </sub>(N-GAD<sub>65</sub>). Uncomplicated T1D subjects also exhibited reactivity towards ROS-GAD<sub>65</sub>. However, this was found to be less as compared to the binding recorded from complicated subjects. These results were further proven by competitive ELISA estimations. The apparent association constants (AAC) indicate greater affinity of IgG from retinopathic T1D patients (1.90 × 10<sup>-6 </sup>M) followed by nephropathic (1.81 × 10<sup>-6 </sup>M) and uncomplicated (3.11 × 10<sup>-7 </sup>M) T1D patients for ROS-GAD<sub>65 </sub>compared to N-GAD<sub>65</sub>.</p> <p>Conclusion</p> <p>Increased oxidative stress and blood glucose levels with extended duration of disease in complicated T1D could be responsible for the gradual formation and/or exposing cryptic epitopes on GAD<sub>65 </sub>that induce increased production of ROS-GAD<sub>65</sub>Abs. Hence regulation of ROS-GAD<sub>65</sub>Abs could offer novel tools for analysing and possibly treating T1D complications.</p

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Get PDF
    This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.Esta revisĂŁo enfatiza a expressĂŁo e a função dos receptores muscarĂ­nicos, adrenoceptores α1 e receptores para relaxina no sistema reprodutor masculino. A expressĂŁo dos receptores muscarĂ­nicos e adrenoceptores α1 em compartimentos especĂ­ficos de dĂșctulos eferentes, epidĂ­dimo, ductos deferentes, vesĂ­cula seminal e prĂłstata de vĂĄrias espĂ©cies indica o envolvimento destes receptores na modulação da composição do fluido luminal e na contração do mĂșsculo liso, incluindo efeitos na fertilidade masculina. AlĂ©m disso, a ativação dos receptores muscarĂ­nicos leva Ă  transativação do receptor para o fator crescimento epidermal e proliferação das cĂ©lulas de Sertoli. Os receptores para relaxina estĂŁo presentes no testĂ­culo, RXFP1 nas espermĂĄtides alongadas e cĂ©lulas de Sertoli de rato e RXFP2 nas cĂ©lulas de Leydig e germinativas de ratos e humano, sugerindo o envolvimento destes receptores no processo espermatogĂȘnico. A localização de ambos os receptores na porção apical das cĂ©lulas epiteliais e no mĂșsculo liso dos ductos deferentes de rato sugere um papel na contração e na regulação da secreção.Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq)Universidade Federal de SĂŁo Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FarmacologiaUNIFESP, EPM, Depto. de FarmacologiaSciEL

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Full text link

    Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity

    Get PDF
    A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites
    • 

    corecore