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Abstract

A growing interest in asparagine (Asn) metabolism has currently been observed in cancer

and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspar-

tate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen

source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and

the type B, which preferably uses glutamine. Absent in humans and present in trypanoso-

matids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it

was reported that AS-A was essential in Leishmania donovani, making it a promising drug

target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Try-

panosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen

donors. Moreover, we have successfully generated LiASA null mutants by targeted gene

replacement in L. infantum, and these parasites do not display any significant growth or

infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when

null mutants were cultured in asparagine limiting conditions. Altogether our results demon-

strate that despite being important under asparagine limitation, LiAS-A is not essential for

parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we

exclude AS-A as a suitable drug target against L. infantum parasites.

Author Summary

It was recently described that asparagine synthetase A (AS-A) of trypanosomatids uses not

only ammonia but also glutamine for asparagine formation, which was a surprising feature

for a type A AS. Interestingly, Leishmania donovani AS-A was reported to be essential for

parasite survival, and once a human homologue was absent, this enzyme emerged as a

novel drug target candidate. Leishmania infantum encodes for a functional AS-A enzyme,

which also uses either ammonia or glutamine as nitrogen donor for asparagine synthesis.
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In L. infantum, ASA ablation drives parasites auxotrophic to asparagine, however, LiAS-A

is not detrimental for parasite survival, growth or infectivity. AS-A is therefore unlikely to

be a suitable drug target against Leishmania parasites.

Introduction

Leishmaniasis is a vector borne human disease, caused by several species of digenetic proto-

zoan parasites belonging to genus Leishmania. The clinical presentations of this neglected trop-

ical disease vary from selfhealing cutaneous manifestations to potentially fatal, if untreated,

visceral ailment [1]. The most severe form of the disease, designated as visceral leishmaniasis

(VL) is mainly associated to Leishmania donovani or Leishmania infantum. Due to the absence

of human vaccines, VL control relies mainly on chemotherapy and appropriate vector control

[2]. The traditional therapeutic options are associated with significant limitations (cost, toxic-

ity, complex administration regimes, resistance) averting disease control in endemic areas [3].

As consequence, according to World Health Organization between 20,000 and 30,000 people

(mostly children) die every year, rendering the search for novel chemotherapeutic options a

priority [4].

Asparagine (Asn) metabolism has been under the spotlight in the recent years. Asn is the

last nonessential amino acid to be synthesised from glucose metabolism [5]. For many years it

seemed it was not involved in any other pathway but protein synthesis in mammalian cells, con-

trasting with the other 19 common amino acids [6]. Nonetheless, several recent studies suggest

Asn somehow coordinates cell responses with metabolic reserves and ultimately regulates cell

fate [5]. In many pathogenic microorganisms, functional studies on L-asparaginase and Asn

transporters have implicated Asn metabolism in survival, invasion and/or virulence [7–14].

Asparagine synthetase (AS) is another key player in Asn metabolism, it catalyses Asn forma-

tion from aspartate in an ATP dependent manner using ammonia or glutamine as nitrogen

donors. The reaction mechanism comprises two crucial steps: 1) the formation of β-asparty-

lAMP, in which β-carboxylate group of aspartate is activated by ATP; 2) nucleophilic attack by

an ammonium ion. This mechanism mirrors the close evolutionary relation to aminoacyl-

tRNA synthetase enzymes [15]. There are two structurally distinct types of AS: A and B [16].

Type B (AS-B, EC. 6.3.5.4) uses preferably glutamine over ammonia and can be found in pro-

karyotes and eukaryotes (mammalian cells, yeasts, Chlamydomonas reinhardtii, higher plants)

[17–23]. Type A (AS-A, EC. 6.3.1.1) are found mainly in prokaryotes (Escherichia coli [24] and

Klebsiella aerogenes [25]) or in archaea (Pyrococcus abyssi [26]) and described as strictly

ammonia dependent. Surprisingly, kinetoplastids and other protozoans, despite being eukary-

otes, possess not only a putative AS-B but also a bacterial type AS-A [27–29]. Moreover AS-A

from Trypanosoma brucei, Trypanosoma cruzi [28] and L. donovani [29] parasites were

reported to use glutamine as nitrogen donor as well.

Several roles have been associated to bacterial AS. For instance, in Pasteurella multocida,

AS-A is significantly upregulated during host infection, inMycobacterium smegmatis AS-B is

involved in natural resistance to antibiotics and inMycobacterium tuberculosis, AS-B was

reported to be required for in vitro growth [30–33].

Recently our group showed that in T. brucei bloodstream forms AS-A knockdown has no

impact on parasites growth or infectivity, except upon Asn deprivation. These results suggest

Asn main sources are AS-A mediated synthesis and extracellular uptake [28]. Surprisingly, in

L. donovani, AS-A was claimed to be essential for parasites survival and emerged as a promis-

ing drug target due to the absence of a human homologue [29]. Additionally, these results also
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suggest that Asn homeostasis could be differently regulated among trypanosomatids. These

parasites present different amino acid requirements for either energetic or osmotic functions in

different stages of their life cycles and as a reflex of the different environmental stimuli they

receive in the vector or mammalian host [34]. Across trypanosomatids’ species, the amino acid

transporters (AAT) repertoire has a high interspecific variation, regarding number, affinity,

specificity and capacity [34]. For instance, in the case of cysteine, a crucial amino acid for thiol

biosynthesis, Leishmania major contrarily to T. brucei, fails to uptake it at a rate that ensures

the intracellular pool is enough for optimal growth. Therefore, these parasites rely mainly on

pathways that enable cysteine synthesis [35].

In this work, we have biochemically characterized L. infantum AS-A (LiAS-A), and to gain

further insights on AS-A essentiality across different Leishmania species, we have performed

gene replacement studies in L. infantum.

Methods

Ethics statement

All experiments were carried out in accordance with the IBMC.INEB Animal Ethics Commit-

tee and the Portuguese National Authority for Animal Health (DGAV) guidelines, according

to the statements on the directive 2010/63/EU of the European Parliament and of the Council.

DGAV approved the animal experimentation presented in this manuscript under the license

DGAV number 25268/2013-10-02.

Chemicals and reagents

L-asparagine, L-aspartic acid sodium salt monohydrate, L-glutamine, L-glutamatic acid salt

hydrate, ATP disodium salt hydrate, AMP disodium salt, sodium pyrophosphate decahydrate,

ninhydrin, dNTPs, ammonium chloride, magnesium chloride, tween-20, tris-base, urea, thio-

urea, DTT, triton X-100 and IPTG (isopropyl-β-D- thiogalactopyranoside) were purchased

from Sigma. Oligonucleotide primers were obtained from STAB VIDA. Restriction endonucle-

ases were from New England Biolabs. Polyclonal antibodies against LiAS-A were obtained in

rabbits inoculated with purified recombinant His-tagged LiAS-A. E. coli L-asparaginase was

purchased from Prospec.

Parasites

L. infantum (MHOM/MA/67/ITMAP-263) promastigote forms were grown at 26°C in com-

plete RPMI 1640 medium [36]. For in vitro and in vivo characterization, different cell lines

were firstly recovered from the spleen of infected BALB/c to restore virulence, and subse-

quently maintained in culture no longer than 10 passages [36]. Axenic amastigotes were grown

in MAA complete medium [36], at 37°C, 5% CO2. Depending on the analysis, protein extracts

were prepared as follows: 1) 1 x 107 late-stationary promastigotes were resuspended in T8 lysis

buffer (tris-base 0.6%, urea 42%, thiourea 15%, DTT 0.3%, triton X-100 1%); or 2) 1 x 108 pro-

mastigotes or axenic amastigotes were resuspended in 100 μL of PBS containing protease

inhibitor (Roche) and following 6 freezing/thaw cycles, the parasite suspensions supernatants

were recovered and then quantified using Bio-Rad DC Protein Assay (Biorad).

AS-A protein alignments and LiAS-A/LmAS-A homology models

EcAS-A, LiAS-A, LmAS-A, TbAS-A and TcAS-A protein alignments were performed using the

ClustalW program [37]. Aline program, Version 011208 [38], was used for editing protein

sequence alignments. LiAS-A and LmAS-A homology models were obtained with

AS-A Is Dispensable for L. infantum Infectivity
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SWISS-MODEL, using EcAS-A crystal structure (Protein Data Bank (PDB) 12AS [15]) as a

template (percentage of sequence identity of ~50–60% in both cases) [39–41]. The 3D models

were illustrated using PyMOL program (The PyMOL Molecular Graphics System, Version 1.3,

Schrödinger, LLC).

Cloning ASA genes

Asparagine synthetase A (ASA) from L. infantum (LinJ.26.0790; chromosome LinJ.26;

234298–235360) was obtained by performing PCR on genomic DNA, extracted using DNAzol

(Invitrogen) [42–44], using primers 1 + 2 (S1 Table). PCR conditions were as follows: initial

denaturation (2 min at 94°C), 35 cycles of denaturation (30 s at 94°C), annealing (30 s at 50°C)

elongation (2 min at 68°C) and a final extension step (10 min at 68°C). Another restriction

strategy was required to clone the gene into a Leishmania overexpression vector–pSPα-

BLASTα, and the sequence was amplified using primers 3 + 4 (S1 Table). PCR conditions were

as follows: initial denaturation (2 min at 94°C), 30 cycles of denaturation (15 s at 94°C), anneal-

ing (30 s at 55°C) elongation (1 min at 72°C) and a final extension step (10 min at 72°C). All

PCR products were cloned into a pGEM-T Easy vector (Promega) and sent for sequencing.

Expression and purification of poly-His-tagged recombinant LiAS-A

The LiASA gene was excised from the pGEM-T Easy vector (using NdeI/EcoRI), and subcloned

into pET28a(+) expression vector (Novagen). The resulting construct presented a poly-His tag

(6x Histine residues) at the N-terminal and was transformed into E. coli BL21DE3. The recom-

binant protein was expressed by induction of log-phase cultures with 0.5 mM of IPTG at 18°C

O/N. Bacteria were harvested and resuspended in buffer A (0.5 M NaCl, 20 mM Tris.HCl, pH

7.6). The sample was sonicated, according to the following conditions: output 4, duty cycle

50%, 10 cycles with 15 s each (Branson sonifier 250), followed by centrifugation to obtain the

bacterial crude extract. For enzymatic activity experiments and rabbit polyclonal antibody pro-

duction, the recombinant enzyme was purified in one step using Ni2+ resin (Qiagen) pre-equil-

ibrated in buffer A. The column was washed sequentially with buffer A, bacterial crude extract,

and buffer A with increasing concentrations of imidazole. LiAS-A was eluted in the fractions of

buffer A containing 100 to 500 mM of imidazole. Dialysis was performed against PBS.

For additional activity tests, oligomeric form and Stokes’ radius assessment, a deeper purifi-

cation was performed. Firstly, the enzyme was purified by affinity chromatography, using a

Histrap HP column (GE Healthcare), charged with nickel sulphate and equilibrated in buffer

A, and posteriorly mounted in an AKTAPrimer Plus (GE Healthcare) system, at 4°C. Secondly,

it was purified by size exclusion chromatography, in a Hiprep 26/60 Sephacryl S-200 column

(GE Healthcare), previously equilibrated with running buffer (150 mMNaCl, 20 mM Tris, pH

7.6). The last purification step was a preparative ion exchange chromatography, using an UNO

Q-1 (Bio-Rad, Cat. No 720–0001) column, mounted in a BioLogic DuoFlow (Bio-Rad) device,

at 4°C. The fractions were finally analysed by analytic size exclusion chromatography and ana-

lytic ion exchange chromatography, using AktaPurifier10 system (GE Healthcare), using

Superose 12 10/300GL (GE Healthcare) column and a UNO Q-1 (Bio-Rad, Cat. No 720–0001)

column, respectively. The final fractions were concentrated using Millipore centrifugal filter

30K (Amicon Ultra).

Concentration was determined measuring the absorbance at 280 nm using the theoretical

molar extinction coefficient of 46910 M-1.cm-1 for LiAS-A, making use of NanoDrop ND-1000

Spectrophotometer (NanoDrop Technologies). The purified recombinant protein was resolved

in SDS/PAGE and stained with Coomassie Brilliant Blue G-250 (Biorad).

AS-A Is Dispensable for L. infantum Infectivity
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For estimation of the LiAS-A oligomeric state the purified recombinant protein was ana-

lysed by analytic size exclusion chromatography, using the above described conditions. Blue dex-

tran (2,000 kDa), catalase (MW 232 kDa, Stokes radius (SR) 5.22 nm), aldolase (MW 158 kDa,

SR 4.81 nm), albumin (MW 67 kDa, SR 3.55 nm), ovalbumin (MW 43 kDa, SR 3.05 nm), chy-

motrypsinogen A (MW 25 kDa, SR 2.09 nm) and ribonuclease (MW 13.7 kDa, SR 1.64 nm) were

used as standards. A calibration curve relating Log (MW) or Log(SR) with Kavwas performed

(Kav is (Ve-V0)/(Vt-V0), in which Ve is elution volume, V0 is the exclusion volume given by blue

dextran and Vt is the total volume of the column).

Differential scanning fluorimetry

In a 96-well, thin-walled white PCR plate, 5 μl of LiAS-A (2.4 μM) were mixed with 5 μl of

10x SYPRO Orange (λexc 485 nm; λem 625 nm) and 40 μl of water or the ligands and ligands

combinations to be tested. Plates were then sealed and placed into a BioRad iCycler5 PCR

instrument. Measurements were taken every minute in 0.5°C increments from 25° to 95°C.

Subsequent analysis of the fluorescent data using Biorad iCycler iQ Optical System Software

Version 3.1 yielded the protein melting temperature (Tm) for LiAS-A.

Western-blot analysis

Western-blot was performed aiming different purposes: (1) His-tag labelling of recombinant

proteins, (2) LiAS-A labelling in total soluble parasite extracts to assess protein expression

throughout the life cycle, (3) LiAS-A labelling in mutants and (4) to assess protein distribution

upon digitonin fractionation. One μg of recombinant LiAS-A, 20 μg of total soluble extracts

from both promastigote and amastigote forms, or 1 x 107 parasites were resolved in SDS-PAGE

and transferred onto a nitrocellulose membrane (TransBlot Turbo, Bio-Rad), which was

blocked, probed, washed and developed as previously described [28]. The following primary

antibodies were used: rabbit anti-His-tag (MicroMol-413, 1:1000), mouse anti-α-tubulin

(clone DM1A, Neomarkers, 1:1000), rabbit anti-LiAS-A (1:1000), rabbit anti-LiCS (cysteine

synthase, 1:2000), rabbit anti-LdHGPRT (hypoxanthine guanine phosphoribosyl transferase,

1:2000), and rabbit anti-TbEnolase (1:5000). Horseradish peroxidase-conjugated goat anti-rab-

bit or goat anti-mouse IgG (Amersham) (1:5000 for 1 h, at RT) were used as the secondary

antibody. ImageJ software (version 1.43u) was used for protein semi-quantification.

Enzymatic assay

A 150 μl enzymatic mixture containing 85 mM Tris.HCl, 8.4 mMmagnesium and varying con-

centrations of aspartate, ammonia and ATP was assayed. The assay was performed as previ-

ously described [28], and ultimately absorbance at 340 nm was measured [45]. To determine

the optimal conditions for kinetic parameters determination, reaction linearity was checked by

varying enzyme concentration and time. The final reaction conditions used 7.5 μg of enzyme

per assay and 15 min incubation at 37°C. A pH range of 7.0 to 9.0 was assessed, and pH 7.6 was

selected as the optimal one to perform the following enzyme assays. To determine the Km of

each substrate a certain range of concentration was used and the remaining substrates were

maintained in excess. For aspartate, ammonia, ATP and glutamine, the following concentra-

tions were used: 1.25 to 20, 0.78 to 50, 0.625 to 10 and 1.56 to 25 mM, respectively.

Generation of LiASA null mutants

A targeted gene replacement strategy was used for L. infantum ASA gene knock-out. Briefly,

ASA flanking regions were amplified from L. infantum genomic DNA and were linked to

AS-A Is Dispensable for L. infantum Infectivity
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neomycin phosphotransferase (NEO) or hygromycin phosphotransferase (HYG) genes using a

fusion PCR approach. The 5’ and 3’UTR were amplified using primers 1 + 2 and 3 + 4 (S2

Table), respectively. NEO and HYG were amplified from pSP72αNEOα and pGL345HYG tem-

plates, using primers 5 + 6 and 7 + 8 (S2 Table) respectively, which possess around 30 nucleo-

tides of the 5’ UTR in the sense primer and the first 30 nucleotides of the 3’UTR in the

antisense primer. 5’UTR_NEO_3’ UTR and 5’ UTR_HYG_3’UTR constructs were obtained

using primers 1 + 4 (S2 Table). Mid-log promastigotes were transfected with approximately

10 μg of linear construct, obtained by fusion PCR, using an AMAXA Nucleofector II device

with Human T-cell nucleofector kit (Lonza). The day after transfection drug selection was car-

ried out at 20 μg/mL of G418 (Invitrogen) and 50 μg/mL of hygromycin B (InVivoGen). Para-

site cloning was performed by diluting the parasite suspension to a concentration of 0.5 cells/

well, using SDM culture medium. The drug concentrations for clone maintenance correspond

to half of the selection concentrations.

Generation of LiASA overexpressor (OE) and null mutants’
complementation

LiASA gene was excised from the pGEM-T Easy vector (using XbaI/NdeI) and subcloned into

pSP72αBLASTα vector. Mid-log promastigotes, WT and dKO mutants, were transfected with

approximately 10 μg of plasmid DNA as above in order to generate an overexpressing line

(OE) or complemented null mutants, respectively. Drug selection was carried out at 30 μg/ml

of blasticidin (InVivoGen).

PCR and Southern-blot analysis of LiASAmutants

LiASAmutants were analysed by PCR using Taq polymerase (NZYTech) for the following

events: LiASA presence; NEO 5’ integration; NEO 3’ integration; HYG 5’ integration and HYG

3’ integration, using primers pairs 9 + 10, 11 + 12, 13 + 14, 15 + 16 and 17 + 18 (S2 Table),

respectively. Additionally, a non-related gene from chromosome 28, encoding a putative

ribose-5-phosphate isomerase B (RPIB, ~570 bp) was used as control, using primers 19 + 20

(S2 Table). For Southern-blot analysis, total genomic DNA was extracted. Ten μg of genomic

DNA were digested O/N with a 5 fold excess of SacI and NdeI, at 37°C and samples were run

O/N in an agarose gel. The gel was sequentially incubated with 0.25 M HCl, 1.5M NaCl 0.5M

NaOH and 3M NaCl 0.5M Tris.HCl pH 7. DNA was then transferred O/N onto a Nylon mem-

brane (Amersham), using 10x SSC (saline sodium citrate: 300 mM sodium citrate, 1 M NaCl).

Nucleic acids fixation was achieved at 65°C for 5 hours. Hybridization and revelation were

undertaken using Gene Images AlkPhos Direct Labelling and Detection System kit (GE

Healthcare Amersham). Pre-hybridisation, hybridisation and washes took place at 65°C, probe

labelling and membrane stripping were performed according to the manufacturer instructions.

The blots were probed sequentially with 5’UTR, LiASA, HYG and NEO, which were PCR

amplified, using primers 1 + 2, 9 + 10, 7 + 8 and 5 + 6 (S2 Table), respectively.

In vitro growth of LiASAmutants

Cultures were launched and monitored microscopically every 24h for 8 days or were main-

tained in log phase by subculturing every 2 days and cumulative growth was assessed for 5 con-

secutive passages. The growth experiments were performed in complete RPMI (cRPMI) or Asn

depleted cRPMI (cRPMI + L-asparaginase) obtained by cRPMI O/N incubation with 1250 U/L

of L-asparaginase at 37°C. Growth curves were also undertaken in a serum-free RPMI (sfRPMI

[46]) incubated with L-asparaginase, that was removed afterwards by flowing the medium

through a 3 kDa Millipore centrifugal filter (Amicon Ultra), generating an Asn free medium

AS-A Is Dispensable for L. infantum Infectivity
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(sfRPMI + L-asparaginase). Asn was directly added to the Asn free sfRPMI (cf = 380 μM) to

generate complemented sfRPMI (sfRPMI + L-Asparaginase + Asn). Finally, growth curves

were performed in complete M199 (cM199) [29] or cM199 supplemented with Asn

(cf = 380 μM). Growth curves of LiASAmutants and WT were seeded at 1 x 106 parasites/ml at

26°C, except in the case of sfRPMI, whose initial parasite density was 2 x 106 parasites/ml,

grown with agitation. Before launching growth curves, the parasites were maintained in log

phase for 2–3 passages in the absence of selection drugs.

In vivo infectivity of LiASAmutants

Five to six weeks old female BALB/c mice were obtained from Charles River. For each mouse

injection, 1 x 108 promastigotes recovered from 4 days old stationary culture were washed,

resuspended in PBS, and injected intraperitoneally. Mice of each group (n = 4) were sacrificed

at 2 weeks post-infection. The parasite burden in the spleen and liver was determined by limit-

ing dilution as previously described [47].

Digitonin fractionation

For each sample condition, 1 x 108 promastigotes were washed once with cold trypanosome

homogenisation buffer (THB), composed by 25 mM Tris, 1 mM EDTA and 10% sucrose, pH

7.8. Just before cell lyses, peptidase inhibitor (Roche) and different digitonin (Calbiochem)

quantities (final concentrations of 12.5, 25, 50, 100, 200, 500 and 1000 μg/ml) were added to

250 μl of cold THB, for cell pellet resuspension. Untreated cells and those completely permea-

bilised (total release, the result of incubation in 1% Triton X-100) were used as controls. Each

sample was incubated 60 min on ice, and then centrifuged at 13,000 rpm, 4°C, for 10 min.

Supernatants were taken off into new pre-cold tubes and 250 μl of cold THB was added to each

pellet and then mixed. All fractions were analysed by WB.

Immunofluorescence

L. infantummid-log promastigotes were fixed, permeabilised and stained as previously

described [48]. Cells were incubated with primary antibody O/N at 4°C. The following primary

antibodies were used: rabbit anti-LiAS-A (1:1000) and sheep anti-LiTDR1 (thiol-dependent

reductase 1, 1:2000). Subsequently, slides were incubated for 1h at RT in a dark humidified

atmosphere with a secondary antibody (1:500). The following secondary antibodies were used:

goat anti-rabbit Alexa Fluor 488 or 568 and donkey anti-sheep Alexa Fluor 488 (Molecular

probes, Life Technologies). In the case of Mitotracker Orange (Invitrogen), we stained the par-

asites by adding 1 μM to culture medium (without FBS) for 1h at 26°C, prior to the above

described procedure. Slides were stained and mounted with Vectashield-DAPI (Vector Labora-

tories, Inc.). Images were captured using fluorescence microscope AxioImager Z1 (Carl Zeiss),

equipped with a Axiocam MR v. 3.0 camera (Carl Zeiss), using either 63x (Plan-Apochromat

63x/1.40 Oil DIC) or 100x (Plan-Apochromat 100x/1.40 Oil DIC) objective. Images analysis

and deconvolution was performed using ImageJ software (v. 1.47) and image deconvolution

lab plugin (2010 Biomedical Imaging Group, EPFL, Switzerland) with Richardson-Lucy

algorithm.

Statistical analysis

For statistical analysis, one-way ANOVA and two-tailed Student’s test were used. Statistical

analysis was performed using GraphPad Prism Software (version 5.0): statistical significance p

< 0.05 (�), p< 0.01 (��), p< 0.001 (���), p< 0.0001 (����).
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Results

LiAS-A and LmAS-A sequence alignment and homology models

The open reading frames (ORFs) encoding putative AS-A and AS-B enzymes were identified

in the genomes of L. infantum JPCM5 (LinJ.26.0790; LinJ.29.1590) and L.major Friedlin

(LmjF.26.0830; LmjF.29.1490) [42–44]. The ASA amplified sequence from L. infantum strain

matched 100% the annotated sequence from JPCM5 genome. To obtain structural and func-

tional insights on AS-A enzymes, we have performed in silico analysis using the L. infantum

(LiAS-A), L.major (LmAS-A), T. brucei (TbAS-A), T. cruzi (TcAS-A) and E. coli (EcAS-A)

sequences that generate polypeptides containing 353, 353, 351, 348 and 330 residues, respec-

tively (Fig 1A). Overall, the sequence alignment shows a high conservation of the main struc-

tural features, including the active site residues (Fig 1A). Indeed, the amino acids involved in

Asn binding are strictly conserved across species, whereas in the case of AMP binding pocket,

the majority of residues are conserved with a few exceptions. For instance, in the case of

LiAS-A and LmAS-A, there is a sole residue replacement, namely EcAS-A L109, corresponding

to I111 in both cases. This residue is not involved in polar interactions with AMP molecule,

but instead integrates the outer wall of the nucleotide binding pocket [15].

Analysing the homology models of LiAS-A and LmAS-A (Fig 1B) obtained by superimposi-

tion with EcAS-A crystal structure (PDB 12AS [15]), there is a divergent region highlighted

with a dashed rectangle (Fig 1B) in L. infantum and L.major enzymes, which is strictly con-

served in these two species. This region also exists in trypanosomes, although little conserva-

tion is found when comparing to Leishmania sp. (Fig 1A, [28, 29]).

Fig 1. Multiple-sequence alignment of prokaryote and eukaryote AS-A proteins and 3D homology
models of LiAS-A and LmAS-A. A) Alignment of LiAS-A (NCBI-Gene ID: 5069795/ LinJ.26.0790), LmAS-A
(NCBI-Gene ID: 5652811/LmjF.26.0830), TbAS-A (NCBI-GeneID:3658321/ Tb927.7.1110), TcAS-A
(NCBI-GeneID:3534325/Tc00.1047053503625.10) and EcAS-A (NCBI-GeneID:948258/pdb:12AS). A pre-
established colour pattern was used, according to ALSCRIPT Calcons (Aline version 011208): red, identical
residues; orange to blue, scale of conservation of amino acid properties in each column alignment; white,
dissimilar residues). Secondary structure components of EcAS-A crystal structure (black) are represented
above the alignment. In all sequences, binding residues for several ligands were represented: AMP (circles),
asparagine (squares), ATP (triangle) and aspartate (inverted triangle).B) Superposition of EcAS-A structure
(green) (PDB accession code 12AS), with LiAS-A (blue) and LmAS-A (purple) homology models (obtained
from the SWISS-MODEL server, using PDB 12AS as a template). The dashed box points a structurally
divergent region.

doi:10.1371/journal.pntd.0004365.g001
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Enzymatic characterization of LiAS-A

Recombinant LiAS-A, comprising a 6 histidine N-terminal tag, was expressed in E. coli and

purified by affinity chromatography in native conditions in order to evaluate and characterize

its enzymatic activity. The protein presented the expected MW for the monomer, ~42 kDa, as

presented on Fig 2A and 2B, with either Coomassie staining or Western-blot analysis with an

anti-HisTag antibody, respectively. Subsequently, LiAS-A was further purified sequentially by

size exclusion and ion exchange chromatographies, and the final fractions were analysed by

analytic size exclusion chromatography (Fig 2C). Using the latter chromatography and calibra-

tion standards, Stokes’ radius (~3.52 nm, Fig 2D) and MW (~78.8 kDa, Fig 2E) were extrapo-

lated in the protein native state. LiAS-A corresponds to a homodimer, as predicted.

For the characterization of the enzymatic activity of recombinant LiAS-A, a specific colori-

metric assay that quantifies Asn formation was used [28, 45]. The optimal pH for the enzy-

matic activity was 7.6. The kinetic characterization of the enzyme was undertaken in steady-

state conditions, using a fixed concentration of 8.4 mM of Mg2+ (Table 1). LiAS-A displayed

ammonia and glutamine dependent activity

Fig 2. Analysis of recombinant LiAS-A. A) Coomassie blue stained 12% SDS-PAGE gel of 10 μg of
recombinant LiAS-A post affinity chromatography purification.B)Western-blot analysis of 1 μg of purified
recombinant LiAS-A using a rabbit anti-HisTag monoclonal antibody (1:1000). MW, molecular weight marker.
C) Analytic size exclusion chromatogram of recombinant LiAS-A after purification by affinity, size exclusion
and ion exchange chromatographies.D and E) Calibration curve for LiASA Stokes’ radius and MW
determination, respectively. Kav was determined considering the elution volume of the proteins used as
standards, the total volume of the column and the exclusion volume given by the elution of blue dextran. The
used standards were as follows: ribonuclease (R), chymotrypsinogen A (CtA), ovalbumin (OA), albumin (A),
aldolase (Ald), catalase (C). Data is representative of two independent experiments. F and G) Differential
scanning fluorimetry analysis of recombinant LiAS-A in the presence of several ligands, expressed in Tm

variation (ΔTm - °C) determined as Tm (protein + ligand)–Tm (protein without ligand). F) Single ligand effect at
1 mM concentration: ATP, AMP, pyrophosphate (Pyro), ammonium chloride (NH4Cl), magnesium chloride
(MgCl2), asparagine (Asn), aspartate (Asp), glutamate (Glu), glutamine (Gln).G) Concentration dependent
effect of AMP in LiAS-A stabilization. These results represent the mean values of two independent
experiments plus the standard deviation.

doi:10.1371/journal.pntd.0004365.g002
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When comparing Km values for ammonia and glutamine, no statistical significant difference

is found (p = 0.03), but there is significance in the differences found in kcat (p = 1.80 x 10−4). In

order to discard the possibility that utilization of glutamine as a substrate was an artefact resulting

from contamination with EcAS-B (EcAS-B ~120 kDa), highly purified fractions of LiAS-A

(LiAS-A ~84 kDa) were tested and glutamine utilization were clear in all protein samples tested.

Differential scanning fluorimetry was also used in order to further understand the relevance

of the different substrates for thermal stabilization of the enzyme. AS-A forms a crucial β-Aspar-

tylAMP-Mg2+ intermediate, which then undergoes a nucleophilic attack of ammonia, forming

Asn and releasing AMP e pyrophosphate [15]. According to our data, ammonia can be free or

glutamine-derived, although the glutaminase domain of LiAS-A remains to be identified. Look-

ing at the differential scanning fluorimetry data, AMP leads to a 10 degrees shift in LiAS-A Tm,

thermally stabilising this protein (Fig 2F) in a concentration dependent fashion (Fig 2G).

LiASA null mutants generation by targeted gene replacement

A targeted gene replacement strategy was used for inactivation of the ASA gene of L. infantum.

Two constructs, obtained by fusion PCR, linking NEO or HYG to the 5’ and 3’ UTRs of the

LiASA gene were used to remove the first and second LiASA allele, respectively. Two sKO

mutants (clones A and B) were transfected with theHYG construct. We successfully obtained

5 dKO mutants, 3 from clone A (A1, A2 and A3) and 2 from clone B (B1 and B2). The integra-

tion of the resistance markers in the expected locus was confirmed by PCR using primers

upstream of the 5’UTR or downstream of the 3’UTR coupled with primers in their ORFs (the

strategy is illustrated on Fig 3A). NEO 5’ and 3’ integration was positive in both sKO and dKO

mutants, as for HYG, only in dKO parasites, as expected (Fig 3B). Also by PCR analysis, we

could not amplify LiASA ORF in null mutants (a non-related gene–LiRPIB- was amplified as

control–Fig 3B).

Southern-blot analysis confirmed the genotypes: the expected fragments upon digestion

with SacI and NdeI are represented on Fig 3A. A first hybridisation was performed using 5’

UTR as a probe: in WT a single band of ~1696 bp corresponding to LiASA was generated, with

twice the intensity observed in the sKO mutants that possess a single copy, and absent in the

dKO mutants, confirming the successful gene removal (Fig 3C). In both sKO and dKO clones,

a band of ~2973 bp was generated corresponding to NEO, and then only in dKO clones, a band

of ~2052 bp corresponding to HYG was observed (Fig 3C). The blot was then stripped and

reprobed three additional times to confirm each one of the bands (faint bands of incomplete

stripping can be observed), sequentially using LiASA, NEO and HYG. All the mutants were

Table 1. Kinetic parameters of LiAS-A for aspartate, ATP, ammonia and glutamine.

Substrate L. infantum

Km (mM) kcat (s
-1) Ksp* (M-1.s-1)

Aspartate 6.21 ± 1.15 9.19 ± 0.69 1.48 x 103

ATP 1.47 ± 0.04 4.18 ± 0.02 2.84 x 103

Ammonia dependent activity

Ammonia 1.12 ± 0.16 7.46 ± 0.33 6.66 x 103

Glutamine dependent activity

Glutamine 1.71 ± 0.28 4.51 ± 0.19 2.64 x 103

*Specificity Constant (kcat / Km)

The values are means ± standard deviations obtained from 3 independent experiments.

doi:10.1371/journal.pntd.0004365.t001
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also analysed by Western-blot, showing a protein reduction in sKO mutants and a complete

absence in the dKO clones (Fig 3D). LiASA gene was cloned into a pSP72αBLASTα vector in

order to obtain an overexpressor mutant (OE) as well (Fig 3D).

AS-A is localized in the cytosol of L. infantum promastigotes

Rabbit polyclonal antibodies produced against recombinant LiAS-A recognised a major band in

total WT promastigotes extract with the expected molecular weight (~39.8 kDa [web.expasy.org/

protparam], S1A Fig), but not in a dKOmutant (dKO A2). Prior to immunolocalisation studies,

LiAS-A antibody was also validated (S1B Fig) by performing an IFA and comparing the labelling

intensity inWT promastigotes versus LiASA null mutants and OE. A positive correlation

between protein level and fluorescence intensity was found onWT versusOE (S1C Fig). As

expected, no specific labelling was detected for the LiAS-A null mutants (S1B and S1C Fig).

Using α−tubulin (~50 kDa) as loading control we compared the expression levels of LiAS-A

in different developmental stages: promastigotes (logarithmic, early stationary and late station-

ary phase) and axenic amastigotes (Fig 4A). No significant differences were observed.

Immunofluorescence analysis showed that in promastigotes LiAS-A co-localises with

LiTDR1 (thiol-dependent reductase 1), which is a cytosolic protein involved in thiol

Fig 3. Genetic and post-translational analysis of the LiASAmutants. A) LiASA locus schematics: ASA
allele and targeted gene replacement cassettes, containing NEO andHYG resistance genes. Horizontal
black arrows and numbers represent the primer pairs used to assess the genotype of the mutants: the grey
dashed line represents the expected PCR fragment. Southern-blot approach, upon digestion with NdeI
(vertical black contoured arrows) and SacI (vertical black full coloured arrows) is also represented: dashed
black lines represent the expected digestion fragments.B) PCR analysis of LiASAmutants to assess LiASA
presence, NEO 5’ and 3’ integration andHYG 5’ and 3’ integration. Additionally, non-related LiRPIB gene from
chromosome 28 was amplified as a control. b, blank. C) Southern-blot analysis of 10 μg of LiASAmutants
(versusWT) genomic DNA, previously digested with NdeI and SacI, and probed using 5’ UTR. Subsequently,
the blot was stripped and reprobed 3 additional times, using LiASA, NEO andHYG. D)Western-blot analysis
of LiAS-A expression in promastigote mutants (versusWT) using LiCS (cysteine synthase) as loading control.
OE, overexpressor.

doi:10.1371/journal.pntd.0004365.g003
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metabolism [49] (Fig 4B, upper panel). LiAS-A subcellular localisation in promastigotes was

also assessed by digitonin fractionation. The fractioning profile was evaluated using antibodies

for proteins present in different subcellular compartments, namely, anti-TbEnolase (LiEnolase

versus TbEnolase 79% identity, LiEnolase 39.6 kDa) as cytosolic marker [50], and anti-

LdHGPRT (hypoxanthine guanine phosphoribosyltransferase, 23.6 kDa) as glycosomal marker

[51]. LiEnolase (Fig 4C) can be found in the supernatant for digitonin concentrations as low as

12.5 μg/ml, and retained in the pellets up to 25–50 μg/ml. LiHGPRT (Fig 4C), which localises

to the glycosomes, is detected in the supernatant in appreciable amounts for higher digitonin

concentrations and is retained longer in the pellet (up to 200–500 μg/ml, and residually at

1000 μg/ml of digitonin). As expected, LiAS-A presents a profile similar to LiEnolase, support-

ing a cytosolic location (Fig 4C).

Fig 4. LiAS-A expression and localization in L. infantum. A) AS-A expression in different stages of L.
infantum life cycle. Promastigote forms: logarithmic phase (Log), early stationary phase (ES), late stationary
phase (LS); axenic amastigote forms (Am). Twenty μg of total extract were analysed by Western-blot and
probed with rabbit polyclonal anti-LiAS-A. α-tubulin (mouse monoclonal antibody) was used as loading
control. These results are representative of 3 independent experiments. B) Immunofluorescence analysis
showing AS-A (red upper panel; green lower panel) localization in L. infantum promastigote form. Nucleus
and kinetoplast DNA, cytosol and mitochondria were stained with DAPI (blue), sheep anti-LiTDR1 (thiol-
dependent reductase in green) and Mitotracker Orange CMTMROS (red), respectively. Images were
acquired with a 100x objective, using a Zeiss AxioImager Z1. The scale bar corresponds to 5 μm. Data is
representative of 4 independent experiments. C) Digitonin fractionation of mid-log L. infantum promastigotes.
Pellet (P) and supernatant (S) fractions obtained using increasing concentrations of digitonin or positive
control with 1% of Triton X-100 (TR–Total Release) were subjected to Western-blot analysis and probed with
antibodies against LiEnolase (cytosolic marker) and hypoxanthine guanine phosphoribosyltransferase
LiHGPRT (glycosomal marker). Data is representative of 5 independent experiments.

doi:10.1371/journal.pntd.0004365.g004
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Intriguingly, LdAS-A was reported to have dual localisation between the cytoplasm and

mitochondria in promastigote form [29]. Due to the high identity (~99%) between both

enzymes, we investigated whether LiAS-A also localised to the mitochondria. Immunofluores-

cence analysis of LiAS-A subcellular distribution on promastigotes labelled with mitotracker

showed no evidence of mitochondrial location (Fig 4B, lower panel). Moreover, by using tools

for protein localisation prediction (TargetP, CELLO, MITOPROT and Predotar), mitochon-

dria localisation seems unlikely and actually, CELLO predicts cytoplasmic localisation. In con-

clusion, our data shows LiAS-A localises to the cytosol.

LiAS-A is required for promastigotes growth only in asparagine limiting
conditions

All mutants displayed similar growth patterns comparing to WT promastigotes in cRPMI (Fig

5A). However, in Asn depleted medium, achieved upon L-asparaginase treatment (cRPMI + L-

asparaginase), the behaviour was quite different for some of the mutants. Parasites overexpres-

sing LiAS-A displayed a significant higher growth during log phase when comparing to the

WT, whereas the dKO mutants (clones A2 and B1) displayed a major growth defect (Fig 5B).

The complementation of these null mutants with an episome (pSP72αBLASTα) carrying

LiASA gene rescued the growth (Fig 5B). Moreover, an upregulation in LiAS-A levels could be

observed in these mutants in Asn limiting conditions (Fig 5C). Western-blot analysis also

showed that in the same conditions, an upregulation in LiAS-A could also be observed over

time in the sKO parasites (clones A and B), enabling the growth recovery in these mutants (Fig

5B–5D and S3 Table). This recovery was faster in sKO clone B that had higher basal levels of

LiAS-A than clone A (Fig 5B and 5C). We also evaluated the cumulative growth under constant

multiplicative conditions, in which high amino acids levels are required. For that, parasites

were maintained in log phase in Asn replete or Asn depleting conditions, and the same patterns

were observed (S2 Fig).

To ensure the defective growth phenotype of sKO and dKO parasites in L-asparaginase

treated medium was due to Asn depletion, we supplemented this medium with Asn. Surpris-

ingly the addition of this amino acid to L-asparaginase treated RPMI medium fails to reverse

the observed growth delay/arrest phenotype. The fact that L-asparaginase was not inactivated

or neutralized, and consequently may have remained active, may explain this result. Conse-

quently, we used another strategy by undertaking growth curves in a serum free medium

(sfRPMI [46]) incubated with L-asparaginase that was removed afterwards using a 3 kDa Ami-

con column. In sfRPMI devoid of Asn (sfRPMI + L-asparaginase), the same growth defect of

the sKO and dKO mutants was observed (Fig 5E). And then again, in the sKO clones the upre-

gulation of LiAS-A allowed the growth rescue (Fig 5G and S3 Table). When adding back Asn

(sfRPMI + L-Asparaginase + Asn), all mutants grew in a similar fashion (Fig 5F). In the

absence of drug pressure and in normal conditions, parasites provided of an episome carrying

LiASA (OE) hardly overexpress AS-A, however, under Asn depleting conditions, they upregu-

late its expression (comparing to the levels in the WT, there is an increase from ~130% to

~300% and from ~110 to ~130%, in panels C and G, respectively, and S3 Table).

Moreover, besides the experiments using L-asparaginase treatment, we have also performed

growth curves in a medium formally lacking Asn–complete M199 (cM199)—in order to fur-

ther confirm Asn auxotrophy upon ASA ablation. In this medium, null mutants presented a

growth defect comparable to the one observed in cRPMI + L-asparaginase, which again was

reversed when these mutants were complemented with an ectopic copy of ASA gene (Fig 5B

versus 5H). The addition of Asn to the final concentration of 380 μM (like in RPMI) rescues

the growth defect displayed by the null mutants in cM199 (Fig 5I). Interestingly, the
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experiments to assess LiAS-A essentiality in L. donovani were performed in cM199 [29], there-

fore the inability to generate LdASA null mutants may be due to the performance of those

attempts in Asn limiting conditions.

In conclusion, ASA deletion renders parasites auxotrophic to Asn, but is dispensable for

parasite growth in normal conditions.

Fig 5. In vitro growth of LiASAmutants in normal or Asn depletedmedium and respective LiAS-A
expression levels. A and B) L. infantum promastigote growth curves in cRPMI or cRPMI + L-asparaginase,
respectively, including dKOmutants (clones A2 and B1) complemented with pSPαBLASTα carrying LiASA

gene. In B, a significant growth difference in comparison to WT (p < 0.05, Graphpad Prism 5.0 version) was
found for sKO A, sKO B, dKO A2 and B1, dKO A2 + LiAS-A, dKO B1 + LiAS-A and OEmutants for days 1 to
8, days 1 to 6, days 1 to 8, days 2 to 6, days 2 to 7 and day 3, respectively. C)Western-blot analysis of LiAS-A
expression in 7 days old LiASAmutants (versusWT) cultured in cRPMI and cRPMI + L-asparaginase.D)
Western-blot analysis of LiAS-A expression levels over time in WT, and clones A and B cultured in cRPMI
(lane L-asparaginase -) or cRPMI + L-asparaginase (lane L-asparaginase +). E and F) L. infantum
promastigote growth curves in sfRPMI + L-asparaginase or sfRPMI + L-asparaginase + Asn, respectively.
sfRPMI was Asn depleted through incubation with L-asparaginase, which was then removed by flowing the
medium through an Amicon Column of 3 kDa pore (sfRPMI + L-asparaginase). Asn was then added directly
to the medium (sfRPMI + L-asparaginase + Asn). In E, a significant growth difference in comparison to
WT (p < 0.05, Graphpad Prism 5.0 version) was found for sKO A, sKO B and dKO A2 and B1 mutants for
days 2 to 7, days 2 and 5 to 7 and days 2 to 7, respectively.G)Western-blot analysis of LiAS-A expression in
7 days old LiASAmutants (versusWT) cultured in sfRPMI + L-asparaginase (lane Asn -) and sfRPMI + L-
asparaginase + Asn (lane Asn +). H and I) L. infantum promastigote growth curves in cM199 and cM199
+ Asn, respectively, including dKOmutants complemented with pSPαBLASTα carrying LiASA gene. In H, a
significant growth difference in comparison to WT (p < 0.05, Graphpad Prism 5.0 version) was found for dKO
A2 and B1, dKO A2 + LiAS-A and dKO B1 + LiAS-A mutants for days 1 to 7, days 2 and 3, days 1 to 3,
respectively. The results (A-I) are representative of 2 independent experiments. For the Western-blot
analysis displayed in C, D and G, 1x107 parasites were used for total extract preparation and LiCS (cysteine
synthase) was used as loading control. OE, overexpressor.

doi:10.1371/journal.pntd.0004365.g005
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In vivo infectivity of LiASAmutants

Notwithstanding, we intended to evaluate the impact of LiASA ablation on, in vivo infectivity.

Five to six old female BALB/c mice were infected and were sacrificed at 2 weeks post-infection.

The parasite burden in the spleen (Fig 6A) and liver (Fig 6B) was not statistically different in

LiASAmutants when compared to the WT. The same scenario was observed for sKO A and

dKO A2 mutants. No differences in LiAS-A expression levels were found when comparing par-

asites used in mice infection (Culture) to parasites recovered from spleen (S) or liver (L) (Fig

6C). Thus, LiAS-A ablation does not compromise parasite infectivity in the context of an acute

in vivo infection.

Discussion

Despite being eukaryotes, trypanosomatids, present AS-A enzymes of bacterial origin. More-

over, these enzymes are aminoacyl-tRNA synthetase paralogues, displaying an AsnRS catalytic

core with conserved class II motifs, yet lacking the tRNA binding domain [27]. In this work, we

have demonstrated that LiAS-A is able to synthesize Asn using either ammonia or glutamine

as nitrogen donors, as previously described for TbAS-A, TcAS-A and LdAS-A [28, 29]. Km val-

ues for aspartate and ATP are close to the ones determined for TbAS-A and TcAS-A [27]. As

for ammonia, the Km value found for LiAS-A is 5 fold lower in comparison to TbAS-A,

TcAS-A and LdAS-A [27, 28]. In the case of LdAS-A, the Km values for aspartate were around

10 fold lower [29] than the ones obtained for LiAS-A. Regarding the high conservation of the

active sites among Leishmania AS-A enzymes, we cannot exclude that the observed kinetic dif-

ferences may be due to the differences in the amount of protein that is properly folded, espe-

cially taking into account they are expressed in a heterologous system. Moreover, it is

important to emphasize that the kinetic determinations for LdAS-A were performed using a

different experimental set up. Importantly, TbAS-A and TcAS-A use preferably ammonia [28],

whereas LiAS-A seems to use both roughly in the same extent (Table 1). AS-A activity in

Fig 6. In vivo infectivity of LiASAmutants in mice. A and B) Stationary promastigotes were intra-
peritoneally injected in BALB/c mice that were sacrificed 2 weeks post infection, in order to determine
parasite burden in spleen (A) and liver (B). The values represent the means of four independent
animals ± standard deviation C)Western-blot analysis of LiAS-A levels in WT and LiASAmutants: parasites
maintained in culture (C) comparing with parasites recovered from spleen (S) or liver (L). The data is
representative of 2 independent experiments carried out with 2 different clones for each genotype. For the
Western-blot analysis displayed in C, 1x107 parasites were used for total extract preparation and LiCS
(cysteine synthetase) was used as loading control. OE, overexpressor.

doi:10.1371/journal.pntd.0004365.g006
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trypanosomatids more resembles AS-B enzymes, concerning both the optimal pH for enzy-

matic activity (7.6 instead of 8) and also the ability to use both nitrogen donors. AS-B enzymes

use preferably glutamine, with exception of the human enzyme that presents approximately

the same affinity for both nitrogen sources [18, 19, 25, 52–57]. This biochemical feature, so far

only described for trypanosomatids AS-A enzymes [28, 29], becomes particularly interesting in

the context of the presence of an ORF encoding a hypothetical, yet non-classical, AS-B, in the

genome of these organisms (L. infantum [LinJ.29.1590], L.major [LmjF.29.1490], T. brucei

[Tb927.3.4060] and T. cruzi [Tc00.1047053510001.40]) [42–44]. These sequences contain a

Pfam AS domain (pfam00733) and glutamine hydrolysing domains in the C and N-terminus,

respectively. BLASTp analysis of L. infantum sequence, for instance, revealed several hits that

corresponded to hypothetical proteins from a broad range of eukaryotes. However, we have no

evidence AS-B is functional at all.

Much remains to be disclosed regarding the AS-A enzymes from trypanosomatids, for

instance, we still lack information on their glutamine binding and hydrolysing sites. TbAS-A

crystallisation only emphasised the high conservation of Asn and AMP binding pockets, as the

only divergent region from EcAS-A (a 19 residues insertion, also present in LiAS-A and

LmAS-A, Fig 1) was not visible in the experimental electron density maps and therefore likely

disordered [29]. This insertion displays little conservation when comparing Leishmania and

trypanosomes, and its role on a structural or functional level is still unclear.

AS-A is a key enzyme in Asn metabolism that was proposed as a potential drug target due

to its absence in the human host. Moreover, AS-A was reported to be essential for L. donovani

survival, contrasting with T. brucei bloodstream forms, as in the latter it was shown to be dis-

pensable for both in vitro growth and infectivity. These findings pointed to a differently regu-

lated Asn homeostasis across trypanosomatids. In L. infantum, our efforts to generate ASA null

mutants were successful, indicating the gene is not essential for survival. Moreover, the null

mutants did not present any growth or infectivity defect. Our in vitro growth data demonstrate

that upon LiASA deletion, promastigotes become dependent on extracellular Asn for optimal

growth (Fig 5). These results suggest that even if AS-B is functional, it does not compensate

LiAS-A activity, as LiASA null mutants fail to grow in Asn limiting conditions. Additionally,

WT parasites grew normally in Asn depleted medium without AS-A upregulation, suggesting

Asn synthesis by basal AS-A suffices the cellular needs, although the mutants overexpressing

this enzyme had a metabolic advantage in an Asn deprivation environment during log phase

(S2B and S2E Fig). We can actually infer the parasite can both synthesise and take up this

amino acid, and the latter fully compensates the former. Furthermore, our results indicate that

LiAS-A levels are regulated according to Asn availability, and it was equally surprising to see

how fast and efficiently sKOmutants were able to upregulate AS-A when cultured in Asn limit-

ing conditions (Fig 5D). It is also noteworthy that the two sKO mutants displayed a substantial

difference in AS-A levels, which has also been observed among other sKO mutants generated

in this study. A possible explanation might be that the two allelic copies may differently affect

ASA expression.

In trypanosomatids, much remains to be unravelled concerning amino acid transporters

(AATs) and mostly the pathways involved in amino acid sensing and regulation of their syn-

thesis and uptake [34]. Very few data is available in the literature concerning Asn transport in

these parasites. In T. brucei, a protein presenting putative orthologues in Leishmania [42–44]

was characterized as a transporter of several neutral amino acids, including asparagine

(TbAATP1) [58]. In mammalian cells, AS-B is a transcriptional target of the well characterized

GCN2/elF2α/ATF4 axis, in response to amino acid starvation [59, 60]. The phosphorylation of

elF2 leads to a repression of general protein synthesis, as well as an activation of gene-specific

translation. In Saccharomyces cerevisiae, GCN2, which is activated by amino acid, glucose or
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purine deprivation, is the only elF2 kinase, contrasting with mammals that possess some addi-

tional three, HRI, PKR and PEK/PERK [61]. T. brucei and L. donovani PERK orthologues [62,

63] have been implicated in the response to ER stress and their activation leads to a decrease in

the overall translation [62]. At the moment, it is still not clear whether phosphorylation of elF2

in trypanosomatids would result in a downstream signalling cascade, as bZIP type transcrip-

tion factors, that could act like GCN4 or ATF4, are absent in these organisms [64].

The close relation between L. infantum and L. donovani species and the 99% identity of

AS-A between both makes the discrepant phenotype intriguing. In the literature, several cases

in which knocking out a gene can have different impact on virulence depending on the species

can be found. [65]. Nevertheless, to our knowledge, there is no documented example among

cutaneous or among visceral species of a gene that is detrimental for survival in one species and

dispensable in other closely related species. However, we did find a case of differences at a

strain level for instance [66]. Nonetheless, firstly we must highlight that LdASA essentiality was

claimed solely based on the consecutive failure in the removal of the second gene copy [29].

Secondly, our results suggest that the medium in which the experiments were performed,

cM199, may explain this difference. The former lacks Asn and LiASA null mutants could not

grow unless upon Asn supplementation (Fig 5H and 5I). These results reinforce the impor-

tance of the medium composition when attempting gene knock-out of metabolic enzymes, and

supplementation may be detrimental when potentially generating auxotrophs [67, 68].

LiASA dKO mutants displayed no compromised infectivity in mice, suggesting that in intra-

cellular amastigote form, either AS-B is functional or, most likely, parasites are able to uptake

Asn in such an extent that compensates the lack of intracellular synthesis. In vivo treatment

with L-asparaginase, which induces a decrease in Asn bloodstream levels, has been successfully

used for years in the treatment of acute lymphoblastic leukemia [69] and recently it was pro-

posed as a promising strategy to treat bacteremia caused by group A Streptococcus and eventu-

ally other extracellular bacteria [13]. However, if for some extracellular pathogens, L-

asparaginase treatment seems promising, in the case of an obligate intracellular microorgan-

ism, even when simultaneously inhibiting the microbial AS-A, several issues may arise, namely

the potential contribution of the host cell for Asn de novo synthesis.

Taken all together, we conclude AS-A is not a suitable drug target candidate in L. infantum,

and therefore, with regard to drug development, such a protein target becomes pointless

against Leishmania.
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antibody (1:1000). Upper and lower panels present brightfield and LiAS-A (green) + DAPI

(blue) stained images, respectively. Images were acquired with a 100x objective, using a Zeiss

AxioImager Z1. The scale bar corresponds to 5 μm. C) Fluorescence intensity quantification in

WT, dKO clone A2 and OE parasites when stained with anti-LiAS-A antibody (1:1000). The

values are expressed in CTCF (corrected total cell fluorescence), and background (BG) values

are displayed as well. The quantification was performed on images acquired with 63x objective,

using a Zeiss AxioImager Z1 and the same exposure time for all genotypes (LiAS-A 400 ms;

DAPI 100 ms). Twenty different fields for each genotype were analysed in duplicate, and the

fluorescence of an average of 50–100 parasites was quantified using ImageJ (v 1.47) software.

Statistical analysis was performed using Graphpad Prism 5.0 version: statistical significance

p< 0.05 (�), p< 0.01 (��), p< 0.001 (���), p< 0.0001 (����). The results (A-C) are representa-

tive of 2 independent experiments.
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S2 Fig. Cumulative in vitro growth of logarithmic LiASAmutants in normal or Asn

depleted medium. A/D and B/E) L. infantum promastigotes growth curves of LiASAmutants

(versusWT), cultured in cRPMI and cRPMI + L-asparaginase, respectively. Parasites were

maintained in logarithmic phase by subculturing every 2 days. The results correspond to

mean values of duplicates ± standard deviation. Statistical analysis was performed using

Graphpad Prism 5.0 version: statistical significance p< 0.05 (�), p< 0.01 (��), p< 0.001 (���),

p< 0.0001 (����). C and F)Western-blot analysis of LiAS-A expression levels in 8 days old

promastigotes, cultured in cRPMI and cRPMI + L-asparaginase. In A-F panels, the results are

representative of two independent experiments. For the Western-blot analysis displayed in C
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