99 research outputs found

    Loss of interleukin-12 modifies the pro-inflammatory response but does not prevent duct obstruction in experimental biliary atresia

    Get PDF
    BACKGROUND: Livers of infants with biliary atresia and of neonatal mice infected with rotavirus (RRV) have increased expression of interferon-gamma (IFNγ) and interleukin (IL)-12. While the expression of IFNγ regulates the obstruction of extrahepatic bile ducts by lymphocytes, the role of IL-12 in the pathogenesis of biliary obstruction is unknown. Based on the role of IL-12 as a key proinflammatory cytokine, we hypothesized that loss of IL-12 prevents the obstruction of extrahepatic bile ducts. METHODS: IL12-knockout (IL-12KO) and wild type mice were injected with RRV or saline at day 1 of age and monitored for the development of symptoms. The cellular and molecular phenotypes were determined at days 3, 7, and 14 by real-time PCR and flow cytometry. RESULTS: RRV infection of IL-12KO mice resulted in growth failure, jaundice/acholic stools, and decreased survival similar to wild-type mice. IL-12KO mice had a remarkable neutrophil-rich portal inflammation and epithelial sloughing of extrahepatic bile ducts. Loss of IL-12 decreased but did not abolish the hepatic expression of IFNγ, displayed a remarkable increase in expression of TNFα, IFNα, IFNβ and decreased expression of IL-4 and IL-5. CONCLUSION: Loss of IL-12 did not modify the progression of bile duct obstruction in experimental biliary atresia. However, the inflammatory response was predominantly neutrophil-based and displayed a Th1 response in the absence of IL-12

    The immunobiology of primary sclerosing cholangitis

    Get PDF
    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease histologically characterized by the presence of intrahepatic and/or extrahepatic biliary duct concentric, obliterative fibrosis, eventually leading to cirrhosis. Approximately 75% of patients with PSC have inflammatory bowel disease. The male predominance of PSC, the lack of a defined, pathogenic autoantigen, and the potential role of the innate immune system suggest that it may be due to dysregulation of immunity rather than a classic autoimmune disease. However, PSC is associated with several classic autoimmune diseases, and the strongest genetic link to PSC identified to date is with the human leukocyte antigen DRB01*03 haplotype. The precise immunopathogenesis of PSC is largely unknown but likely involves activation of the innate immune system by bacterial components delivered to the liver via the portal vein. Induction of adhesion molecules and chemokines leads to the recruitment of intestinal lymphocytes. Bile duct injury results from the sustained inflammation and production of inflammatory cytokines. Biliary strictures may cause further damage as a result of bile stasis and recurrent secondary bacterial cholangitis. Currently, there is no effective therapy for PSC and developing a rational therapeutic strategy demands a better understanding of the disease

    "Cognitive Penetrability" - Ch 3 of Seemings and Epistemic Justification

    Get PDF
    In this chapter I introduce the thesis that perceptual appearances are cognitively penetrable and analyse cases made against phenomenal conservatism hinging on this thesis. In particular, I focus on objections coming from the externalist reliabilist camp and the internalist inferentialist camp. I conclude that cognitive penetrability doesn’t yield lethal or substantive difficulties for phenomenal conservatism

    Genetic and metabolic predictors of chemosensitivity in oligodendroglial neoplasms

    Get PDF
    The −1p/−19q genotype predicts chemosensitivity in oligodendroglial neoplasms, but some with intact 1p/19q also respond and not all with 1p/19q loss derive durable benefit from chemotherapy. We have evaluated the predictive and prognostic significance of pretherapy 201Tl and 18F-FDG SPECT and genotype in 38 primary and 10 recurrent oligodendroglial neoplasms following PCV chemotherapy. 1p/19q loss was seen in 8/15 OII, 6/15 OAII, 7/7 OIII, 3/11 OAIII and was associated with response (Fisher-Exact: P=0.000) and prolonged progression-free (log-rank: P=0.002) and overall survival (OS) (log-rank: P=0.0048). Response was unrelated to metabolism, with tumours with high or low metabolism showing response. Increased 18F-FDG or 201Tl uptake predicted shorter progression-free survival (PFS) in the series (log-rank: 201Tl P=0.0097, 18F-FDG P=0.0170) and in cases with or without the −1p/−19q genotype. Elevated metabolism was associated with shorter OS in cases with intact 1p/19q (log-rank: 18F-FDG P=0.0077; 201Tl P=0.0004) and shorter PFS in responders (log-rank: 18F-FDG P=0.005; 201Tl P=0.0132). 201Tl uptake and 1p/19q loss were independent predictors of survival in multivariate analysis. In this initial study, 201Tl and 18F-FDG uptake did not predict response to PCV, but may be associated with poor survival following therapy irrespective of genotype. This may be clinically useful warranting further study

    Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites

    Get PDF
    KEY POINTS: 1. Clinical malnutrition is a heterogenous group of disorders including macronutrient deficiencies leading to body cell mass depletion and micronutrient deficiencies, and these often coexist with infectious and inflammatory processes and environmental problems. 2. There is good evidence that specific micronutrients influence immunity, particularly zinc and vitamin A. Iron may have both beneficial and deleterious effects depending on circumstances. 3. There is surprisingly slender good evidence that immunity to parasites is dependent on macronutrient intake or body composition

    Prolactin Receptor in Primary Hyperparathyroidism – Expression, Functionality and Clinical Correlations

    Get PDF
    <div><h3>Background</h3><p>Primary hyperparathyroidism (PHPT) is an endocrine disorder most commonly affecting women, suggesting a role for female hormones and/or their receptors in parathyroid adenomas. We here investigated the prolactin receptor (PRLr) which is associated with tumours of the breast and other organs.</p> <h3>Methodology/Principal Findings</h3><p>PRLr expression was investigated in a panel of 37 patients with sporadic parathyroid tumours and its functionality in cultured parathyroid tumour cells. In comparison with other tissues and breast cancer cells, high levels of prolactin receptor gene (<em>PRLR</em>) transcripts were demonstrated in parathyroid tissues. PRLr products of 60/70 kDa were highly expressed in all parathyroid tumours. In addition varying levels of the 80 kDa PRLr isoform, with known proliferative activity, were demonstrated. In parathyroid tumours, PRLr immunoreactivity was observed in the cytoplasm (in all cases, n = 36), cytoplasmic granulae (n = 16), the plasma membrane (n = 12) or enlarged lysosomes (n = 4). In normal parathyroid rim (n = 28), PRLr was uniformly expressed in the cytoplasm and granulae. In <em>in vitro</em> studies of short-term cultured human parathyroid tumour cells, prolactin stimulation was associated with significant transcriptional changes in JAK/STAT, RIG-I like receptor and type II interferon signalling pathways as documented by gene expression profiling. Moreover, <em>PRLR</em> gene expression in parathyroid tumours was inversely correlated with the patients’ plasma calcium levels.</p> <h3>Conclusions</h3><p>We demonstrate that the prolactin receptor is highly abundant in human parathyroid tissues and that PRLr isoforms expression and PRLr subcellular localisation are altered in parathyroid tumours. Responsiveness of PRLr to physiological levels of prolactin was observed in the form of increased PTH secretion and altered gene transcription with significant increase of RIG-I like receptor, JAK-STAT and Type II interferon signalling pathways. These data suggest a role of the prolactin receptor in parathyroid adenomas.</p> </div

    Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    Get PDF
    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele

    Confidence and psychosis: a neuro-computational account of contingency learning disruption by NMDA blockade.

    Get PDF
    A state of pathological uncertainty about environmental regularities might represent a key step in the pathway to psychotic illness. Early psychosis can be investigated in healthy volunteers under ketamine, an NMDA receptor antagonist. Here, we explored the effects of ketamine on contingency learning using a placebo-controlled, double-blind, crossover design. During functional magnetic resonance imaging, participants performed an instrumental learning task, in which cue-outcome contingencies were probabilistic and reversed between blocks. Bayesian model comparison indicated that in such an unstable environment, reinforcement learning parameters are downregulated depending on confidence level, an adaptive mechanism that was specifically disrupted by ketamine administration. Drug effects were underpinned by altered neural activity in a fronto-parietal network, which reflected the confidence-based shift to exploitation of learned contingencies. Our findings suggest that an early characteristic of psychosis lies in a persistent doubt that undermines the stabilization of behavioral policy resulting in a failure to exploit regularities in the environment.FV was supported by the Groupe Pasteur Mutualité. RG was supported by the Fondation pour la Recherche Médicale and the Fondation Bettencourt Schueller. SP is supported by a Marie Curie Intra-European fellowship (FP7-PEOPLE-2012-IEF). AF was supported by National Health and Medical Research Council grants (IDs : 1050504 and 1066779) and an Australian Research Council Future Fellowship (ID: FT130100589). This work was supported by the Wellcome Trust and the Bernard Wolfe Health Neuroscience Fund.This is the final version of the article. It first appeared from the Nature Publishing Group via http://dx.doi.org/10.1038/mp.2015.7

    Targeting cancer metabolism: a therapeutic window opens

    Get PDF
    Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.

    Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

    Get PDF
    Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging
    corecore