666 research outputs found

    Fire effects on soils: the human dimension

    Get PDF
    Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days in many different ways, with burning being the first human perturbation at landscape scales. Fire has long been used as a tool to fertilize soils and control plant growth, but it can also substantially change vegetation, enhance soil erosion and even cause desertification of previously productive areas. Indeed fire is now regarded by some as the seventh soil-forming factor. Here we explore the effects of fire on soils as influenced by human interference. Human-induced fires have shaped our landscape for thousands of years and they are currently the most common fires in many parts of the world. We first give an overview of fire effect on soils and then focus specifically on (i) how traditional land-use practices involving fire, such as slash-and-burn or vegetation clearing, have affected and still are affecting soils; (ii) the effects of more modern uses of fire, such as fuel reduction or ecological burns, on soils; and (iii) the ongoing and potential future effects on soils of the complex interactions between human-induced land cover changes, climate warming and fire dynamics. This article is part of the themed issue ‘The interaction of fire and mankind’

    Mass extinctions and supernova explosions

    Full text link
    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, or the direct exposure of lethal x-rays. Another indirect effect is cloud formation, induced by cosmic rays in the atmosphere which result in a drop in the Earth's temperature, causing major glaciations of the Earth. The discovery of highly intensive gamma ray bursts (GRBs), which could be connected to SNe, initiated further discussions on possible life-threatening events in Earth's history. The probability that GRBs hit the Earth is very low. Nevertheless, a past interaction of Earth with GRBs and/or SNe cannot be excluded and might even have been responsible for past extinction events.Comment: Chapter for forthcoming book: Handbook of Supernovae, P. Murdin and A. Alsabeti (eds.), Springer International Publishing (in press

    Coupling virtual watersheds with ecosystem services assessment: A 21st century platform to support river research and management

    Get PDF
    The demand for freshwater is projected to increase worldwide over the coming decades, resulting in severe water stress and threats to riverine biodiversity, ecosystem functioning and services. A major societal challenge is to determine where environmental changes will have the greatest impacts on riverine ecosystem services and where resilience can be incorporated into adaptive resource planning. Both water managers and scientists need new integrative tools to guide them towards the best solutions that meet the demands of a growing human population but also ensure riverine biodiversity and ecosystem integrity. Resource planners and scientists could better address a growing set of riverine management and risk mitigation issues by (1) using a “Virtual Watersheds” approach based on improved digital river networks and better connections to terrestrial systems; (2) integrating Virtual Watersheds with ecosystem services technology (ARtificial Intelligence for Ecosystem Services: ARIES), and (3) incorporating the role of riverine biotic interactions in shaping ecological responses. This integrative platform can support both interdisciplinary scientific analyses of pressing societal issues and effective dissemination of findings across river research and management communities. It should also provide new integrative tools to identify the best solutions and trade-offs to ensure the conservation of riverine biodiversity and ecosystem services

    Integrating Integrated Water Management

    Get PDF
    © 2014, Thomas Telford Services Ltd. All rights reserved. The water cycle is a contiguous system interconnected with human activities. Management has tended to be fragmented across anthropocentrically defined disciplines, potentially generating unintended negative consequences. The ecosystem approach and the ecosystem services framework emphasise interlinked, albeit often overlooked, benefits that the natural environment provides for people. This enables recognition and avoidance of potential ‘negative externalities’, identification of solutions optimising benefits across multiple services, and participation of wider constituencies of stakeholders. Systemic, outcome-based approaches are inherently economically efficient, yielding greater cumulative benefits for lower transaction costs by working with natural processes. The ecosystem approach establishes geographical and socio-economic contexts for management ecosystem service outcomes, providing a broader context in which to nest established water resource management methods. The ecosystem approach can also be applied at different scales and to diverse societal activities, internalising into them the value of natural processes. It is amenable to integration into catchment-scale considerations, yet does not present these activities as subsidiary to river basin planning. The addition of ecosystem services for options appraisal in preexisting decision-support tools adapts them to better address multi-benefit goals. Shifts are required in the policy and economic environment, but engineers have an important role in promoting, applying and innovating multibenefit solutions

    Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965

    Get PDF
    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the ‘Anthropocene’. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the ‘bomb peak’ in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II ‘Great Acceleration’ in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or ‘golden spike’, marking the onset of the Anthropocene Epoch
    • 

    corecore