328 research outputs found

    International money markets: eurocurrencies

    Get PDF
    Eurocurrencies are international markets for short-term wholesale bank deposits and loans. They emerged in Western Europe in the late 1950s and rapidly reached a global scale. A Eurocurrency is a form of bank money: an unsecured short-term bank debt denominated in a currency (for instance, US dollars) but issued by banks operating offshore, in a geographical location or a legal space situated outside of the jurisdiction of the national authorities presiding over that currency (for instance, the Federal Reserve). In Eurocurrency markets, banks intermediate mainly between foreign residents. They borrow funds by "accepting" foreign currency deposits and lend foreign currency-denominated funds by "placing" deposits with other banks, by granting short-term loans or investing in other liquid assets. Historically, Eurodollars accounted for the largest share of Eurocurrencies, although other international currencies (Deutsche Marks, Japanese yens, and especially Euros since 1999) played an important role. Eurocurrency markets were a manifestation of financial integration and interdependence in a globalizing economy and performed critical functions in the distribution and creation of international liquidity. At the same time, their fast growth was a recurrent source of concerns for central bankers and policymakers due to their implications for macroeconomic policies and financial stability. This chapter analyzes different aspects of the historical development of Eurocurrency markets and their role in the international monetary and financial system. The first part discusses theoretical interpretations, presents estimates of markets' size, describes their structure, and explains the determinants of their growth. The second part analyzes the spread between Eurodollar rates and other US money market rates, the role of arbitrage, the evolution of risk factors, and the causes of historical episodes of stress and contagion in the interbank market. The last part discusses political economy issues, such as the role of governments and market forces in the emergence of Eurodollars in the 1950s and the failed attempts to impose multilateral controls on Eurocurrency markets in the 1970s

    Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle

    Get PDF
    BACKGROUND: The involvement of muscle triacylglycerol (TAG) storage in the onset of insulin resistance is questioned and the attention has shifted towards inhibition of insulin signalling by the lipid intermediate diacylglycerol (DAG). The enzyme 1,2-acylCoA:diacylglyceroltransferase-1 (DGAT1) esterifies a fatty acyl-CoA on DAG to form TAG. Therefore, the aim of the present study was to investigate if unilateral overexpression of DGAT1 in adult rat Tibialis anterior (TA) muscle will increase conversion of the lipid intermediate DAG into TAG, thereby improving muscle insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: The DGAT1 gene construct was injected in the left TA muscle of male rats on chow or high-fat (45% kcal) diet for three weeks, followed by application of one 800 V/cm and four 80 V/cm pulses, using the contralateral leg as sham-electroporated control. Seven days after electroporation, muscle specific insulin sensitivity was assessed with a hyperinsulinemic euglycemic clamp using 2-deoxy-[3H]glucose. Here, we provide evidence that unilateral overexpression of DGAT1 in TA muscle of male rats is associated with an increased rather than decreased DAG content. Strikingly, this increase in DAG content was accompanied by improved muscle insulin sensitivity. Interestingly, markers of muscle lipolysis and mitochondrial function were also increased in DGAT1 overexpressing muscle. CONCLUSIONS/SIGNIFICANCE: We conclude that unilateral DGAT1 overexpression can rescue insulin sensitivity, possibly by increasing DAG and TAG turnover in skeletal muscle. In case of a proper balance between the supply and oxidation of fatty acids in skeletal muscle, the lipid intermediate DAG may not exert harmful effects on insulin signalling

    Local Application of BMP-2 Specific Plasmids in Fibrin Glue does not Promote Implant Fixation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BMP-2 is known to accelerate fracture healing and might also enhance osseointegration and implant fixation. Application of recombinant BMP-2 has a time-limited effect. Therefore, a gene transfer approach with a steady production of BMP-2 appears to be attractive. The aim of this study was to examine the effect of locally applied BMP-2 plasmids on the bone-implant integration in a non-weight bearing rabbit tibia model using a comparatively new non-viral copolymer-protected gene vector (COPROG).</p> <p>Methods</p> <p>Sixty rabbits were divided into 4 groups. All of them received nailing of both tibiae. The verum group had the nails inserted with the COPROG vector and BMP-2 plasmids using fibrin glue as a carrier. Controls were a group with fibrin glue only and a blank group. After 28 and 56 days, these three groups were sacrificed and one tibia was randomly chosen for biomechanical testing, while the other tibia underwent histomorphometrical examination. In a fourth group, a reporter-gene was incorporated in the fibrin glue instead of the BMP-2 formula to prove that transfection was successful.</p> <p>Results</p> <p>Implant fixation strength was significantly lower after 28 and 56 days in the verum group. Histomorphometry supported the findings after 28 days, showing less bone-implant contact.</p> <p>In the fourth group, successful transfection could be confirmed by detection of the reporter-gene in 20 of 22 tibiae. But, also systemic reporter-gene expression was found in heterotopic locations, showing an undesired spreading of the locally applied gene formula.</p> <p>Conclusion</p> <p>Our results underline the transfecting capability of this vector and support the idea that BMP-2 might diminish osseointegration. Further studies are necessary to specify the exact mechanisms and the systemic effects.</p

    Hepatopulmonary syndrome in patients with chronic liver disease: role of pulse oximetry

    Get PDF
    BACKGROUND: Hepatopulmonary syndrome (HPS) is a rare complication of liver diseases of different etiologies and may indicate a poor prognosis. Therefore, a simple non-invasive screening method to detect HPS would be highly desirable. In this study pulse oximetry was evaluated to identify patients with HPS. METHODS: In 316 consecutive patients with liver cirrhosis (n = 245), chronic hepatitis (n = 69) or non-cirrhotic portal hypertension (n = 2) arterial oxygen saturation (SaO(2)) was determined using a pulse oximeter. In patients with SaO(2 )≤92% in supine position and/or a decrease of ≥4% after change from supine to upright position further diagnostic procedures were performed, including contrast-enhanced echocardiography and perfusion lung scan. RESULTS: Seventeen patients (5.4%) had a pathological SaO(2). Four patients (1.3%) had HPS. HPS patients had a significant lower mean SaO(2 )in supine (89.7%, SD 5.4 vs. 96.0%, SD 2.3; p = 0.003) and upright position (84.3%, SD 5.0 vs. 96.0%, SD 2.4; p = 0.001) and had a lower mean PaO(2 )(56.2 mm Hg, SD 15.2 vs. 71.2 mm Hg, SD 20.2; p = 0.02) as compared to patients without HPS. The mean ΔSaO(2 )(difference between supine and upright position) was 5.50 (SD 7) in HPS patients compared to non-HPS patients who showed no change (p = 0.001). There was a strong correlation between shunt volume and the SaO(2 )values (R = -0.94). CONCLUSION: Arterial SaO(2 )determination in supine and upright position is a useful non-invasive screening test for HPS and correlates well with the intrapulmonary shunt volume

    Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice

    Get PDF
    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities
    corecore