902 research outputs found

    The terrestrial evolution of metabolism and life – by the numbers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allometric scaling relating body mass to metabolic rate by an exponent of the former (<it>Kleiber's Law</it>), commonly known as quarter-power scaling (QPS), is controversial for claims made on its behalf, especially that of its universality for all life. As originally formulated, Kleiber was based upon the study of heat; metabolic rate is quantified in watts (or calories per unit time). Techniques and technology for metabolic energy measurement have been refined but the math has not. QPS is susceptible to increasing deviations from theoretical predictions to data, suggesting that there is no single, universal exponent relevant to all of life. QPS's major proponents continue to fail to make good on hints of the power of the equation for understanding aging.</p> <p>Essentialist-deductivist view</p> <p>If the equation includes a term for efficiency in the exponent, thereby ruling out thermogenesis as part of metabolism, its heuristic power is greatly amplified, and testable deductive inferences are generated. If metabolic rate is measured in watts and metabolic efficiency is a redox-coupling ratio, then the equation is essentially about the energy storage capacity of organic molecules. The equation is entirely about the essentials of all life: water, salt, organic molecules, and energy. The water and salt provide an electrochemical salt bridge for the transmission of energy into and through the organic components. The equation, when graphed, treats the organic structure as battery-like, and relates its recharge rate and electrical properties to its longevity.</p> <p>Conclusion</p> <p>The equation models the longevity-extending effects of caloric restriction, and shows where those effects wane. It models the immortality of some types of cells, and supports the argument for the origin of life being at submarine volcanic vents and black smokers. It clarifies how early life had to change to survive drifting to the surface, and what drove mutations in its ascent. It does not deal with cause and effect; it deals with variables in the essentials of all life, and treats life as an epiphenomenon of those variables. The equation describes how battery discharge into the body can increase muscle mass, promote fitness, and extend life span, among other issues.</p

    Consumption experience, choice experience and the endowment effect

    Get PDF
    We report experiments investigating how experience influences the endowment effect. Our experiments feature endowments which are bundles of unfamiliar consumption goods. We examine how a subject’s willingness to swap items from their endowment is influenced by prior experiences of tasting the goods in question and by prior experiences of choosing between them. We do not find a statistically significant endowment effect in our baseline treatment and, because of this, we are unable to test for an effect of consumption experience. We do find an endowment effect when the endowment is acquired in two instalments and, in this setting, we find some evidence that choice experience increases trading. In a follow up experiment, we find evidence that the absence of an endowment effect in our baseline treatment is due to subjects being more willing to swap when they do not have to give up the last unit of their endowment

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures

    The Allometry of Host-Pathogen Interactions

    Get PDF
    Understanding the mechanisms that control rates of disease progression in humans and other species is an important area of research relevant to epidemiology and to translating studies in small laboratory animals to humans. Body size and metabolic rate influence a great number of biological rates and times. We hypothesize that body size and metabolic rate affect rates of pathogenesis, specifically the times between infection and first symptoms or death.We conducted a literature search to find estimates of the time from infection to first symptoms (t(S)) and to death (t(D)) for five pathogens infecting a variety of bird and mammal hosts. A broad sampling of diseases (1 bacterial, 1 prion, 3 viruses) indicates that pathogenesis is controlled by the scaling of host metabolism. We find that the time for symptoms to appear is a constant fraction of time to death in all but one disease. Our findings also predict that many population-level attributes of disease dynamics are likely to be expressed as dimensionless quantities that are independent of host body size.Our results show that much variability in host pathogenesis can be described by simple power functions consistent with the scaling of host metabolic rate. Assessing how disease progression is controlled by geometric relationships will be important for future research. To our knowledge this is the first study to report the allometric scaling of host/pathogen interactions

    Sizing Up Allometric Scaling Theory

    Get PDF
    Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade ago by West, Brown, and Enquist (WBE). Their framework elucidates the link between metabolic rate and body mass by focusing on the dynamics and structure of resource distribution networks—the cardiovascular system in the case of mammals. Within this framework the WBE model is based on eight assumptions from which it derives the well-known observed scaling exponent of 3/4. In this paper we clarify that this result only holds in the limit of infinite network size (body mass) and that the actual exponent predicted by the model depends on the sizes of the organisms being studied. Failure to clarify and to explore the nature of this approximation has led to debates about the WBE model that were at cross purposes. We compute analytical expressions for the finite-size corrections to the 3/4 exponent, resulting in a spectrum of scaling exponents as a function of absolute network size. When accounting for these corrections over a size range spanning the eight orders of magnitude observed in mammals, the WBE model predicts a scaling exponent of 0.81, seemingly at odds with data. We then proceed to study the sensitivity of the scaling exponent with respect to variations in several assumptions that underlie the WBE model, always in the context of finite-size corrections. Here too, the trends we derive from the model seem at odds with trends detectable in empirical data. Our work illustrates the utility of the WBE framework in reasoning about allometric scaling, while at the same time suggesting that the current canonical model may need amendments to bring its predictions fully in line with available datasets

    On the Generalizability of Experimental Results

    Get PDF
    The age-old question of the generalizability of the results of experiments that are conducted in artificial laboratory settings to more realistic inferential and decision making situations is considered in this paper. Conservatism in probability revision provides an example of a result that 1) has received wide attention, including attention in terms of implications for real-world decision making, on the basis of experiments conducted in artificial settings and 2) is now apparently thought by many to be highly situational and not at all a ubiquitous phenomenon, in which case its implications for real-world decision making are not as extensive as originally claimed. In this paper we consider the questions of generalizations from the laboratory to the real world in some detail, both within the context of the experiments regarding conservatism and within a more general context. In addition, we discuss some of the difficulties inherent in experimentation in realistic settings, suggest possible procedures for avoiding or at least alleviating such difficulties, and make a plea for more realistic experiments

    "If only I had taken the other road...": Regret, risk and reinforced learning in informed route-choice

    Get PDF
    This paper presents a study of the effect of regret on route choice behavior when both descriptional information and experiential feedback on choice outcomes are provided. The relevance of Regret Theory in travel behavior has been well demonstrated in non-repeated choice environments involving decisions on the basis of descriptional information. The relation between regret and reinforced learning through experiential feedbacks is less understood. Using data obtained from a simple route-choice experiment involving different levels of travel time variability, discrete-choice models accounting for regret aversion effects are estimated. The results suggest that regret aversion is more evident when descriptional information is provided ex-ante compared to a pure learning from experience condition. Yet, the source of regret is related more strongly to experiential feedbacks rather than to the descriptional information itself. Payoff variability is negatively associated with regret. Regret aversion is more observable in choice situations that reveal risk-seeking, and less in the case of risk-aversion. These results are important for predicting the possible behavioral impacts of emerging information and communication technologies and intelligent transportation systems on travelers' behavior. © 2012 Springer Science+Business Media, LLC

    Assessment of two screening tools to identify psoriatic arthritis in patients with psoriasis

    Get PDF
    Background: Many patients with psoriasis have undiagnosed psoriatic arthritis. Low specificity is found with many PsA screening tools. A new instrument, the CONTEST questionnaire, was developed utilizing the most discriminative items from existing instruments. Objective: The aim of this study was to compare the CONTEST and PEST screening tools. Methods: People attending secondary care clinics with psoriasis, but not PsA, completed the questionnaires, were assessed for function and quality of life, and had a physical examination. Patients thought to have PsA were compared to those without. The performance of CONTEST and PEST was compared using area under the receiver operating curve (AUC), and sensitivity and specificity at the previously published cut‐offs. Results: A total of 451 dermatology patients were approached, 35% were reviewed and 27 (17%, 95% CI 12.3–21.7) had unidentified psoriatic arthritis. The sensitivity and specificity (95% CI) of PEST were 0.60 (0.42–0.78)/0.76 (0.69–0.83) and for CONTEST 0.53 (0.34–0.72)/0.71 (0.63–0.79). The confidence limits for the AUC overlapped (AUC for PEST 0.72 (0.61–0.84), for CONTEST 0.66 (0.54–0.77). Conclusions: PEST and CONTEST questionnaires performed equally well, with no superiority of the new CONTEST tool

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    On the thermodynamic origin of metabolic scaling

    Get PDF
    This work has been funded by projects AYA2013-48623-C2-2, FIS2013-41057-P, CGL2013-46862-C2-1-P and SAF2015-65878-R from the Spanish Ministerio de Economa y Competitividad and PrometeoII/2014/086, PrometeoII/2014/060 and PrometeoII/2014/065 from the Generalitat Valenciana (Spain). BL acknowledges funding from a Salvador de Madariaga fellowship, and L.L. acknowledges funding from EPSRC Early Career fellowship EP/P01660X/1
    corecore