616 research outputs found

    Unified model of voltage/current mode control to predict saddle-node bifurcation

    Full text link
    A unified model of voltage mode control (VMC) and current mode control (CMC) is proposed to predict the saddle-node bifurcation (SNB). Exact SNB boundary conditions are derived, and can be further simplified in various forms for design purpose. Many approaches, including steady-state, sampled-data, average, harmonic balance, and loop gain analyses are applied to predict SNB. Each approach has its own merits and complement the other approaches.Comment: Submitted to International Journal of Circuit Theory and Applications on December 23, 2010; Manuscript ID: CTA-10-025

    Bifurcation Boundary Conditions for Switching DC-DC Converters Under Constant On-Time Control

    Full text link
    Sampled-data analysis and harmonic balance analysis are applied to analyze switching DC-DC converters under constant on-time control. Design-oriented boundary conditions for the period-doubling bifurcation and the saddle-node bifurcation are derived. The required ramp slope to avoid the bifurcations and the assigned pole locations associated with the ramp are also derived. The derived boundary conditions are more general and accurate than those recently obtained. Those recently obtained boundary conditions become special cases under the general modeling approach presented in this paper. Different analyses give different perspectives on the system dynamics and complement each other. Under the sampled-data analysis, the boundary conditions are expressed in terms of signal slopes and the ramp slope. Under the harmonic balance analysis, the boundary conditions are expressed in terms of signal harmonics. The derived boundary conditions are useful for a designer to design a converter to avoid the occurrence of the period-doubling bifurcation and the saddle-node bifurcation.Comment: Submitted to International Journal of Circuit Theory and Applications on August 10, 2011; Manuscript ID: CTA-11-016

    Z' signals in polarised top-antitop final states

    Full text link
    We study the sensitivity of top-antitop samples produced at all energy stages of the Large Hadron Collider (LHC) to the nature of an underlying Z' boson, in presence of full tree level standard model (SM) background effects and relative interferences. We concentrate on differential mass spectra as well as both spatial and spin asymmetries thereby demonstrating that exploiting combinations of these observables will enable one to distinguish between sequential Z's and those pertaining to Left-Right symmetric models as well as E6 inspired ones, assuming realistic final state reconstruction efficiencies and error estimates.Comment: 21 pages, 6 colour figures, 10 table

    Anxiolytic Effects of the MCH1R Antagonist TPI 1361-17

    Get PDF
    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts on the MCH1 receptor. MCH1R is expressed widely throughout the brain, particularly in regions thought to be involved in the regulation of stress and emotional response. The role of MCH in anxiety has been controversial, however. Central administration of MCH has been reported to promote or reduce anxiety-like behaviors. The anxiolytic activity of several MCH1R antagonists has also been debated. To address this issue, we have tested whether TPI 1361-17, a highly specific and high affinity MCH1R antagonist, exerts anxiolytic effects in two commonly used models of anxiety, the elevated plus maze and the light–dark transition test. We show that this MCH1R antagonist exerts potent anxiolytic effects in both assays. Our study therefore supports previous studies indicating that MCH1R antagonists may be useful in the treatment of anxiety

    Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds

    Get PDF
    Development and application of the data envelopment analysis (DEA) method, have been the subject of numerous reviews. In this paper, we consider the papers that apply DEA methods specifically to financial services, or which use financial services data to experiment with a newly introduced DEA model. We examine 620 papers published in journals indexed in the Web of Science database, from 1985 to April 2016. We analyse the sample applying citations network analysis. This paper investigates the DEA method and its applications in financial services. We analyse the diffusion of DEA in three sub-samples: (1) banking groups, (2) money market funds, and (3) insurance groups by identifying the main paths, that is, the main flows of the ideas underlying each area of research. This allows us to highlight the main approaches, models and efficiency types used in each research areas. No unique methodological preference emerges within these areas. Innovations in the DEA methodologies (network models, slacks based models, directional distance models and Nash bargaining game) clearly dominate recent research. For each subsample, we describe the geographical distribution of these studies, and provide some basic statistics related to the most active journals and scholars

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Hexokinase II Detachment from Mitochondria Triggers Apoptosis through the Permeability Transition Pore Independent of Voltage-Dependent Anion Channels

    Get PDF
    Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors

    AKR1C enzymes sustain therapy resistance in paediatric T-ALL

    Get PDF
    BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (TALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors.METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches.RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment.CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy

    Ubiquinone Analogs: A Mitochondrial Permeability Transition Pore-Dependent Pathway to Selective Cell Death

    Get PDF
    International audienceBACKGROUND: Prolonged opening of the mitochondrial permeability transition pore (PTP) leads to cell death. Various ubiquinone analogs have been shown to regulate PTP opening but the outcome of PTP regulation by ubiquinone analogs on cell fate has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: The effects of ubiquinone 0 (Ub(0)), ubiquinone 5 (Ub(5)), ubiquinone 10 (Ub(10)) and decyl-ubiquinone (DUb) were studied in freshly isolated rat hepatocytes, cultured rat liver Clone-9 cells and cancerous rat liver MH1C1 cells. PTP regulation by ubiquinones differed significantly in permeabilized Clone-9 and MH1C1 cells from that previously reported in liver mitochondria. Ub(0) inhibited PTP opening in isolated hepatocytes and Clone-9 cells, whereas it induced PTP opening in MH1C1 cells. Ub(5) did not affect PTP opening in isolated hepatocytes and MH1C1 cells, but it induced PTP opening in Clone-9 cells. Ub(10) regulated PTP in isolated hepatocytes, whereas it did not affect PTP opening in Clone-9 and MH1C1 cells. Only DUb displayed the same effect on PTP regulation in the three hepatocyte lines tested. Despite such modifications in PTP regulation, competition between ubiquinones still occurred in Clone-9 and MH1C1 cells. As expected, Ub(5) induced a PTP-dependent cell death in Clone-9, while it did not affect MH1C1 cell viability. Ub(0) induced a PTP-dependent cell death in MH1C1 cells, but was also slightly cytotoxic in Clone-9 by an oxidative stress-dependent mechanism. CONCLUSIONS/SIGNIFICANCE: We found that various ubiquinone analogs regulate PTP in different ways depending on the cell studied. We took advantage of this unique property to develop a PTP opening-targeted strategy that leads to cell death specifically in cells where the ubiquinone analog used induces PTP opening, while sparing the cells in which it does not induce PTP opening

    Antamanide, a Derivative of Amanita phalloides, Is a Novel Inhibitor of the Mitochondrial Permeability Transition Pore

    Get PDF
    Antamanide is a cyclic decapeptide derived from the fungus Amanita phalloides. Here we show that antamanide inhibits the mitochondrial permeability transition pore, a central effector of cell death induction, by targeting the pore regulator cyclophilin D. Indeed, (i) permeability transition pore inhibition by antamanide is not additive with the cyclophilin D-binding drug cyclosporin A, (ii) the inhibitory action of antamanide on the pore requires phosphate, as previously shown for cyclosporin A; (iii) antamanide is ineffective in mitochondria or cells derived from cyclophilin D null animals, and (iv) abolishes CyP-D peptidyl-prolyl cis-trans isomerase activity. Permeability transition pore inhibition by antamanide needs two critical residues in the peptide ring, Phe6 and Phe9, and is additive with ubiquinone 0, which acts on the pore in a cyclophilin D-independent fashion. Antamanide also abrogates mitochondrial depolarization and the ensuing cell death caused by two well-characterized pore inducers, clotrimazole and a hexokinase II N-terminal peptide. Our findings have implications for the comprehension of cyclophilin D activity on the permeability transition pore and for the development of novel pore-targeting drugs exploitable as cell death inhibitors
    corecore