238 research outputs found

    Effect of supplemental phytonutrients on impairment of the flow-mediated brachialartery vasoactivity after a single high-fat meal

    Get PDF
    AbstractObjectivesOur objective was to determine if long-term daily administration of phytonutrient supplements can prevent the immediate adverse impact of a high-fat meal and increase the production of nitric oxide.BackgroundIngestion of a high-fat meal impairs flow-mediated vasodilation of the brachial artery for at least 4 h; however, co-ingestion of vitamin antioxidants or a green salad has been shown to prevent this effect.MethodsFlow-mediated brachial artery reactivity test (BART) both before and 3 h after a 900 calorie 50 g fat meal was evaluated in 38 healthy volunteers (age 36.4 ± 10.1 years). Subjects were randomized to four weeks of daily supplementation with a powdered fruit vegetable juice concentrate (Juice Plus [JP]) along with a complex supplement providing nutritional antioxidants and various herbal extracts (Vineyard [V]), JP alone, or a matching placebo. At three and four weeks, BART was repeated both before and after the high-fat meal. Serum nitrate/nitrite concentrations were measured at baseline and at four weeks.ResultsFour weeks of the JP-V combination blunted the detrimental effect of the high-fat meal (−47.5 ± 23.4% at baseline vs. −1.7 ± 9.7% at four weeks [p < 0.05]). Four weeks of JP alone had a similar beneficial effect (−45.1 ± 19.7% at baseline vs. −16.6 ± 10.3% at four weeks [p < 0.05]), whereas there was no substantial effect of the placebo. In the subjects treated with supplements, concentrations of serum nitrate/nitrite increased from 78 ± 39 to 114 ± 62 μm/l (p < 0.02).ConclusionsDaily ingestion of modest amounts of a fruit/vegetable juice concentrate with or without adjunctive phytonutrient supplementation can reduce the immediate adverse impact of high-fat meals on flow-mediated vasoactivity and increase nitrate/nitrite blood concentration

    Cerebrovascular mental stress reactivity is impaired in hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brachial artery reactivity in response to shear stress is altered in subjects with hypertension. Since endothelial dysfunction is generalized, we hypothesized that carotid artery (CA) reactivity would also be altered in hypertension.</p> <p>Purpose</p> <p>To compare (CA endothelium-dependent vasodilation in response to mental stress in normal and hypertensive subjects.</p> <p>Methods</p> <p>We evaluated CA reactivity to mental stress in 10 young healthy human volunteers (aged 23 ± 4 years), 20 older healthy volunteers (aged 49 ± 11 years) and in 28 patients with essential hypertension (aged 51 ± 13 years). In 10 healthy volunteers and 12 hypertensive subjects, middle cerebral artery (MCA) PW transcranial Doppler was performed before and 3 minutes after mental stress.</p> <p>Results</p> <p>Mental stress by Stroop color word conflict, math or anger recall tests caused CA vasodilation in young healthy subjects (0.61 ± 0.06 to 0.65 ± 0.07 cm, p < 0.05) and in older healthy subjects (0.63 ± 0.06 to 0.66 ± 0.07 cm, p < 0.05), whereas no CA vasodilation occurred in hypertensive subjects (0.69 ± 0.06 to 0.68 ± 0.07 cm; p, NS). CA blood flow in response to mental stress increased in young healthy subjects (419 ± 134 to 541 ± 209 ml, p < 0.01 vs. baseline) and in older healthy subjects (351 ± 114 to 454 ± 136 ml, p < 0.01 vs. baseline) whereas no change in blood flow (444 ± 143 vs. 458 ± 195 ml; p, 0.59) occurred in hypertensive subjects. There was no difference in the CA response to nitroglycerin in healthy and hypertensive subjects. Mental stress caused a significant increase in baseline to peak MCA systolic (84 ± 22 to 95 ± 22 cm/s, p < 0.05), diastolic (42 ± 12 to 49 ± 14 cm/s, p < 0.05) as well as mean (30 ± 13 to 39 ± 13 cm/s, p < 0.05) PW Doppler velocities in normal subjects, whereas no change in systolic (70 ± 18 to 73 ± 22 cm/s, p < 0.05), diastolic (34 ± 14 to 37 ± 14 cm/s, p = ns) or mean velocities (25 ± 9 to 26 ± 9 cm/s, p = ns) occurred in hypertensive subjects, despite a similar increase in heart rate and blood pressure in response to mental stress in both groups.</p> <p>Conclusion</p> <p>Mental stress produces CA vasodilation and is accompanied by an increase in CA and MCA blood flow in healthy subjects. This mental stress induced CA vasodilation and flow reserve is attenuated in subjects with hypertension and may reflect cerebral vascular endothelial dysfunction. Assessment of mental stress induced CA reactivity by ultrasound is a novel method for assessing the impact of hypertension on cerebrovascular endothelial function and blood flow reserve.</p

    Impact of Glycemic and Blood Pressure Variability on Surrogate Measures of Cardiovascular Outcomes in Type 2 Diabetic Patients

    Get PDF
    OBJECTIVE—The effect of glycemic variability (GV) on cardiovascular risk has not been fully clarified in type 2 diabetes. We evaluated the effect of GV, blood pressure (BP), and oxidative stress on intima-media thickness (IMT), left ventricular mass index (LVMI), flow-mediated dilation (FMD), and sympathovagal balance (low frequency [LF]/high frequency [HF] ratio) in 26 type 2 diabetic patients (diabetes duration 4.41 6 4.81 years; HbA1c 6.70 6 1.25%) receiving diet and/or metformin treatment, with no hypotensive treatment or complications. RESEARCH DESIGN AND METHODS—Continuous glucose monitoring (CGM) data were used to calculate mean amplitude of glycemic excursion (MAGE), continuous overall net glycemic action (CONGA)-2, mean blood glucose (MBG), mean postprandial glucose excursion (MPPGE), and incremental area under the curve (IAUC). Blood pressure (BP), circadian rhythm, and urinary 15-F2t-isoprostane (8-iso-prostaglandin F2a [PGF2a]) were also evaluated. Subjects were divided into dipper (D) and nondipper (ND) groups according to DBP. RESULTS—IMT and LVMIwere increased inNDversusD(0.7760.08 vs. 0.6860.13 [P=0.04] and 67 6 14 vs. 55 6 11 [P = 0.03], respectively). MBG, MAGE, and IAUC were significantly associated with LF/HF ratio at night (r = 0.50, P = 0.01; r = 0.40, P = 0.04; r = 0.41, P = 0.04, respectively), MPPGE was negatively associated with FMD (r =20.45, P = 0.02), andCONGA-2was positively associatedwith LVMI (r=0.55, P=0.006).TheDsystolic BP was negatively associated with IMT (r =20.43, P = 0.03) andwith LVMI (r =20.52, P = 0.01). Urinary 8-iso-PGF2a was positively associated with LVMI (r = 0.68 P , 0.001). CONCLUSIONS—An impaired GV and BP variability is associated with endothelial and cardiovascular damage in short-term diabetic patients with optimal metabolic control. Oxidative stress is the only independent predictor of increased LV mass and correlates with glucose and BP variability

    Overweight status is associated with extensive signs of microvascular dysfunction and cardiovascular risk

    Get PDF
    The aim of this present study was to investigate if overweight individuals exhibit signs of vascular dysfunction associated with a high risk for cardiovascular disease (CVD). One hundred lean and 100 overweight participants were recruited for the present study. Retinal microvascular function was assessed using the Dynamic Retinal Vessel Analyser (DVA), and systemic macrovascular function by means of flow-mediated dilation (FMD). Investigations also included body composition, carotid intimal-media thickness (c-IMT), ambulatory blood pressure monitoring (BP), fasting plasma glucose, triglycerides (TG), cholesterol levels (HDL-C and LDL-C), and plasma von Willebrand factor (vWF). Overweight individuals presented with higher right and left c-IMT (p = 0.005 and p = 0.002, respectively), average 24-h BP values (all p <0.001), plasma glucose (p = 0.008), TG (p = 0.003), TG: HDL-C ratio (p = 0.010), and vWF levels (p = 0.004). Moreover, overweight individuals showed lower retinal arterial microvascular dilation (p = 0.039) and baseline-corrected flicker (bFR) responses (p = 0.022), as well as, prolonged dilation reaction time (RT, p = 0.047). These observations emphasise the importance of vascular screening and consideration of preventive interventions to decrease vascular risk in all individuals with adiposity above normal range

    Effects of N-acetyl-cysteine on endothelial function and inflammation in patients with type 2 diabetes mellitus

    Get PDF
    Endothelial dysfunction has been associated with premature vascular disease. There is increasing data that N-acetyl-cysteine (NAC) may prevent or improve endothelial dysfunction. The aim of this study was to assess the effects of NAC on endothelial function in patients with type 2 diabetes mellitus, a population at high risk for endothelial dysfunction. Twenty-four patients with diabetes mellitus were assigned randomly to initial therapy with either 900 mg NAC or placebo twice daily in a double-blind, cross-over study design. Flowmediated vasodilation (FMD) of the brachial artery was assessed at baseline, after four weeks of therapy, after a four-week wash-out period, and after another four weeks on the opposite treatment. Plasma and red blood cell glutathione levels and high-sensitivity C-reactive protein (CRP) were measured at all four visits. At baseline, FMD was moderately impaired (3.7±2.9%). There was no significant change in FMD after four weeks of NAC therapy as compared to placebo (0.1±3.6% vs. 1.2±4.2%). Similarly, there was no significant change in glutathione levels. However, median CRP decreased from 2.35 to 2.14 mg/L during NAC therapy (p=0.04), while it increased from 2.24 to 2.65 mg/L with placebo. No side effects were noted during the treatment period. In this double-blind, randomized cross-over study, four weeks of oral NAC therapy failed to improve endothelial dysfunction in patients with diabetes mellitus. However, NAC therapy decreased CRP levels, suggesting that this compound may have some efficacy in reducing systemic inflammation

    Acute hypoxemia and vascular function in healthy humans.

    Get PDF
    Endothelium-dependent flow mediated dilation (FMD) and endothelium-independent dilation (GTN) are impaired at high altitude (5050 m), and FMD is impaired following acute exposure (<60-minutes) to normobaric hypoxia equivalent to ∼5050 m (∼FI O2  = 0.11). Whether glyceryl trinitrate (GTN)-induced dilation is impaired acutely, and whether FMD is impaired during milder hypoxia is unknown. Therefore, we assessed brachial FMD at baseline and following 30-minutes of mild (74 ± 2 mmHg PET O₂) and moderate (50 ± 3 mmHg PET O₂) normobaric hypoxia (n = 12) or normoxia (time-control trial; n = 10). We also assessed GTN-dilaiton following the hypoxic FMD tests and in normoxia on a separate control day (n = 8). Compared to normoxic baseline, reduction during mild and moderate hypoxic exposure were evident in FMD (mild vs moderate: -1.2 ± 1.1% vs. -3.1 ± 1.7%; P = 0.01) and GTN-dilation (-2.1 ± 1.0 vs. -4.2 ± 2.0; P = 0.01); the decline in FMD and GTN-dilation were greater during moderate hypoxia (P < 0.01). When allometrically corrected for baseline diameter and FMD shear rate under the curve (SRAUC ), relative FMD was attenuated in both conditions (mild vs moderate: 0.6 ± 0.9% vs. 0.8 ± 0.7%; P ≤ 0.01). Following 30-minutes of normoxic time-control, FMD was reduced (-0.6 ± 0.3%; P = 0.02). In summary, there was a graded impairment in FMD during mild and moderate hypoxic exposure, which appears to be influenced by shear patterns and incremental declines in smooth muscle vasodilator capacity (impaired GTN-dilation). Our findings from the normoxic controls study, suggest the decline in FMD in acute hypoxia also appears to be influenced by 30-minutes of supine rest/inactivity. This article is protected by copyright. All rights reserved
    corecore