896 research outputs found

    Determination of the thin film structure of zwitterion doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate): a neutron reflectivity study

    Get PDF
    Doping poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is known to improve its conductivity, however little is known about the thin film structure of PEDOT:PSS when doped with an asymmetrically charged dopant. In this study, PEDOT:PSS was doped with diferent concentrations of the zwiterion 3-(N,N Dimethylmyristylammonio)propanesulfonate (DYMAP), and its effect on the bulk structure of the films characterized by neutron reflectivity. The results show that at low doping concentration, the film separates into a quasi bi-layer structure with lower roughness, (10%), increased thickness (18%), and lower electrical conductivity compared to the undoped sample. However when the doping concentration increases the film forms into a homogeneous layer and experiences an enhanced conductivity by more than an order of magnitude, a 20% smoother surface, and a 60% thickness increase relative to the pristine sample. Atomic force microscopy and profilometry measurements confirmed these findings, and AFM height and phase images showed the gradually increasing presence of DYMAP on the film surface as a function of the concentration. Neutron reflectivity also showed that the quasi bi-layer structure of the lowest concentration doped PEDOT:PSS is separated by a graded rather than a well defined interface. Our findings provide an understanding of the layer structure modification for doped PEDOT:PSS films that should be prove important for device applications

    Relativistic predictions of spin observables for exclusive proton knockout reactions

    Full text link
    Within the framework of the relativistic distorted wave impulse approximation (DWIA), we investigate the sensitivity of complete sets of polarization transfer observables for exclusive proton knockout from the 3s1/2_{1/2}, 2d3/2_{3/2} and 2d5/2_{5/2} states in 208^{208}Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.028.0^{\circ}, 54.6-54.6^{\circ}), to different distorting optical potentials, finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as medium-modified meson-nucleon coupling constants and meson masses. Results are also compared to the nonrelativistic DWIA predictions based on the Schr\"{o}dinger equation.Comment: Submitted for publication to Physicical Review C, 23 pages, 7 figure

    Relativistic predictions of exclusive 208Pb(p,2p)207T^{208}Pb(\vec{p},2p) ^{207}T\ell analyzing powers at an incident energy of 202 MeV

    Full text link
    Within the framework of the relativistic distorted wave impulse approximation (DWIA), we investigate the sensitivity of the analyzing power - for exclusive proton knockout from the 3s1/2_{1/2}, 2d3/2_{3/2} and 2d5/2_{5/2} states in 208^{208}Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.028.0^{\circ}, 54.6-54.6^{\circ}) - to different distorting optical potentials, finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as medium-modified coupling constants and meson masses. Results are also compared to the nonrelativistic DWIA predictions based on the Schr\"{o}dinger equation. Whereas the nonrelativistic model fails severely, both ZR and FR relativistic DWIA models provide an excellent description of the data. For the FR predictions, it is necessary to invoke a 20% reduction of sigma-nucleon and omega-nucleon coupling constants as well as for σ\sigma-, ρ\rho- and ω\omega-meson masses, by the nuclear medium. On the other hand, the ZR predictions suggest that the strong interaction in the nuclear medium is adequately represented by the free nucleon-nucleon interaction associated with the impulse approximation. We also demonstrate that, although the analyzing power is relatively insensitive to the use different relativistic global optical potential parameter sets, the prominent oscillatory behavior of this observable is largely attributed to distortion of the scattering wave functions relative to their plane wave values.Comment: 16 pages, 3 figures, submitted to Phys. Rev.

    Density Waves in Layered Systems with Fermionic Polar Molecules

    Full text link
    A layered system of two-dimensional planes containing fermionic polar molecules can potentially realize a number of exotic quantum many-body states. Among the predictions, are density-wave instabilities driven by the anisotropic part of the dipole-dipole interaction in a single layer. However, in typical multilayer setups it is reasonable to expect that the onset and properties of a density-wave are modified by adjacent layers. Here we show that this is indeed the case. For multiple layers the critical strength for the density-wave instability decreases with the number of layers. The effect depends on density and is more pronounced in the low density regime. The lowest solution of the instability corresponds to the density waves in the different layers being in-phase, whereas higher solutions have one or several adjancet layers that are out of phase. The parameter regime needed to explore this instability is within reach of current experiments.Comment: 7 pages, 4 figures. Final version in EPJD, EuroQUAM special issue "Cold Quantum Matter - Achievements and Prospects

    Modern topics in theoretical nuclear physics

    Full text link
    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde

    BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations

    Get PDF
    We analyze the phenomena of Bose Novae, as described by Donley et al [Nature 412, 295 (2001)], by focusing on the behavior of excitations or fluctuations above the condensate, as driven by the dynamics of the condensate (rather than the dynamics of the condensate alone or the kinetics of the atoms). The dynamics of the condensate squeezes and amplifies the quantum excitations, mixing the positive and negative frequency components of their wave functions thereby creating particles which appear as bursts and jets. By analyzing the changing amplitude and particle content of these excitations, our simple physical picture (based on a test field approximation) explains well the overall features of the Bose Novae phenomena and provide excellent quantitative fits with experimental data on several aspects, such as the scaling behavior of the collapse time and the amount of particles in the jet. The predictions of the bursts at this level of approximation is less than satisfactory but may be improved on by including the backreaction of the excitations on the condensate. The mechanism behind the dominant effect -- parametric amplification of vacuum fluctuations and freezing of modes outside of horizon -- is similar to that of cosmological particle creation and structure formation in a rapid quench (which is fundamentally different from Hawking radiation in black holes). This shows that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure

    A model for net-baryon rapidity distribution

    Full text link
    In nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As the baryon number is conserved, the net-baryon BBˉB-\bar{B} retains information on the energy-momentum carried by the incoming nuclei. A simple and consistent model for net-baryon production in high energy proton-proton and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with data at different centre-of-mass energies and centralities, as well as with existing models. These results show that a good description of the main features of net-baryon data is possible in the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest.Comment: 9 pages, 12 figures; in fig. 11 a) the vertical scale was correcte

    Thermodynamics of Dipolar Chain Systems

    Full text link
    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio

    Domain wall generation by fermion self-interaction and light particles

    Get PDF
    A possible explanation for the appearance of light fermions and Higgs bosons on the four-dimensional domain wall is proposed. The mechanism of light particle trapping is accounted for by a strong self-interaction of five-dimensional pre-quarks. We obtain the low-energy effective action which exhibits the invariance under the so called \tau-symmetry. Then we find a set of vacuum solutions which break that symmetry and the five-dimensional translational invariance. One type of those vacuum solutions gives rise to the domain wall formation with consequent trapping of light massive fermions and Higgs-like bosons as well as massless sterile scalars, the so-called branons. The induced relations between low-energy couplings for Yukawa and scalar field interactions allow to make certain predictions for light particle masses and couplings themselves, which might provide a signature of the higher dimensional origin of particle physics at future experiments. The manifest translational symmetry breaking, eventually due to some gravitational and/or matter fields in five dimensions, is effectively realized with the help of background scalar defects. As a result the branons acquire masses, whereas the ratio of Higgs and fermion (presumably top-quark) masses can be reduced towards the values compatible with the present-day phenomenology. Since the branons do not couple to fermions and the Higgs bosons do not decay into branons, the latter ones are essentially sterile and stable, what makes them the natural candidates for the dark matter in the Universe.Comment: 34 pages, 2 figures, JHEP style,few important refs. adde

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.
    corecore