11,728 research outputs found

    Continuum elasticity theory of edge excitations in a two-dimensional electron liquid with finite range interactions

    Get PDF
    We make use of continuum elasticity theory to investigate the collective modes that propagate along the edge of a two-dimensional electron liquid or crystal in a magnetic field. An exact solution of the equations of motion is obtained with the following simplifying assumptions: (i) The system is {\it macroscopically} homogeneous and isotropic in the half-plane delimited by the edge (ii) The electron-electron interaction is of finite range due to screening by external electrodes (iii) The system is nearly incompressible. At sufficiently small wave vector qq we find a universal dispersion curve ω∼q\omega \sim q independent of the shear modulus. At larger wave vectors the dispersion can change its form in a manner dependent on the comparison of various length scales. We obtain analytical formulas for the dispersion and damping of the modes in various physical regimes.Comment: 3 figure

    Light diffusion and localization in 3D nonlinear disordered media

    Full text link
    Using a 3D Finite-Difference Time-Domain parallel code, we report on the linear and nonlinear propagation of light pulses in a disordered assembly of scatterers, whose spatial distribution is generated by a Molecular Dynamics code; refractive index dispersion is also taken into account. We calculate the static and dynamical diffusion constant of light, while considering a pulsed excitation. Our results are in quantitative agreement with reported experiments, also furnishing evidence of a non-exponential decay of the transmitted pulse in the linear regime and in the presence of localized modes. By using an high power excitation, we numerically demonstrate the ``modulational instability random laser'': at high peak input powers energy is transferred to localized states from the input pulse, via third-order nonlinearity and optical parametric amplification, and this process is signed by a power-dependent non-exponential time-decay of the transmitted pulse.Comment: 5 pages, 4 figures. Revised version with new figure 4 with localized state

    Electron beam transfer line design for plasma driven Free Electron Lasers

    Full text link
    Plasma driven particle accelerators represent the future of compact accelerating machines and Free Electron Lasers are going to benefit from these new technologies. One of the main issue of this new approach to FEL machines is the design of the transfer line needed to match of the electron-beam with the magnetic undulators. Despite the reduction of the chromaticity of plasma beams is one of the main goals, the target of this line is to be effective even in cases of beams with a considerable value of chromaticity. The method here explained is based on the code GIOTTO [1] that works using a homemade genetic algorithm and that is capable of finding optimal matching line layouts directly using a full 3D tracking code.Comment: 9 Pages, 4 Figures. A related poster was presented at EAAC 201

    A microscopic model for solidification

    Full text link
    We present a novel picture of a non isothermal solidification process starting from a molecular level, where the microscopic origin of the basic mechanisms and of the instabilities characterizing the approach to equilibrium is rendered more apparent than in existing approaches based on coarse grained free energy functionals \`a la Landau. The system is composed by a lattice of Potts spins, which change their state according to the stochastic dynamics proposed some time ago by Creutz. Such a method is extended to include the presence of latent heat and thermal conduction. Not only the model agrees with previous continuum treatments, but it allows to introduce in a consistent fashion the microscopic stochastic fluctuations. These play an important role in nucleating the growing solid phase in the melt. The approach is also very satisfactory from the quantitative point of view since the relevant growth regimes are fully characterized in terms of scaling exponents.Comment: 7 pages Latex +3 figures.p

    The Stellar Content of Obscured Galactic Giant HII Regions. VI: W51A

    Full text link
    We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and ~ 0.8'' angular resolution images in the J, H and K_S-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 \pm 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser propermotion observations (6--8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc ~ 1.5 x 10^{50} s^{-1}) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10^{50} s^{-1}) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS2. The K_S--band images resolve the infrared source IRS~2 indicating that it is a very young compact HII region. Sources IRS2E was resolved into compact cluster (within 660 AU of projected distance) of 3 objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of 3 objects (maybe 4 in the case of W51d1) each one. Although IRS~2E is the brightest source in the K-band and at 12.6 \micron, it is not clearly associated with a radio continuum source. Our spectrum of IRS~2E shows, similar to previous work, strong emission in Brγ\gamma and HeI, as well as three forbidden emission lines of FeIII and emission lines of molecular hydrogen (H_2) marking it as a massive young stellar object.Comment: 31 pages and 9 figures, submitted to A

    Selective readout and back-action reduction for wideband acoustic gravitational wave detectors

    Full text link
    We present the concept of selective readout for broadband resonant mass gravitational wave detectors. This detection scheme is capable of specifically selecting the signal from the contributions of the vibrational modes sensitive to the gravitational waves, and efficiently rejecting the contribution from non gravitationally sensitive modes. Moreover this readout, applied to a dual detector, is capable to give an effective reduction of the back-action noise within the frequency band of interest. The overall effect is a significant enhancement in the predicted sensitivity, evaluated at the standard quantum limit for a dual torus detector. A molybdenum detector, 1 m in diameter and equipped with a wide area selective readout, would reach spectral strain sensitivities 2x10^{-23}/sqrt{Hz} between 2-6 kHz.Comment: 9 pages, 4 figure

    Non-perturbative Renormalization of the Complete Basis of Four-fermion Operators and B-parameters

    Get PDF
    We present results on the B-parameters BKB_K, B73/2B^{3/2}_7 and B83/2B^{3/2}_8, at β=6.0\beta=6.0, with the tree-level Clover action. The renormalization of the complete basis of dimension-six four-fermion operators has been performed non-perturbatively. Our results for BKB_K and B73/2B^{3/2}_7 are in reasonable agreement with those obtained with the (unimproved) Wilson action. This is not the case for B83/2B^{3/2}_8. We also discuss some subtleties arising from a recently proposed modified definition of the B-parameters.Comment: Talk presented at Lattice '97, Edinburgh (UK), July 1997. LaTeX 3 pages, uses espcrc

    Delta M_K and epsilon_K in SUSY at the Next-to-Leading order

    Full text link
    We perform a Next-to-Leading order analysis of Delta S=2 processes beyond the Standard Model. Combining the recently computed NLO anomalous dimensions and the B parameters of the most general Delta S=2 effective Hamiltonian, we give an analytic formula for Delta M_K and epsilon_K in terms of the Wilson coefficients at the high energy scale. This expression can be used for any extension of the Standard Model with new heavy particles. Using this result, we consider gluino-mediated contributions to Delta S=2 transitions in general SUSY models and provide an improved analysis of the constraints on off-diagonal mass terms between the first two generations of down-type squarks. Finally, we improve the constraints on R-violating couplings from Delta M_K and epsilon_K.Comment: 20 pages, 1 figure, uses JHEP.cls; the magic numbers in eq. (2.7), previously given in the basis (13) of hep-ph/9711402, are now given in the basis (2.3) of this work. All numerical results are unchange
    • …
    corecore