11 research outputs found

    Brain dysfunction in tubular and tubulointerstitial kidney diseases

    Get PDF
    Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a decreased GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue we selected a group of primary tubular diseases with preserved GFR in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen Bartter and Gitelman syndromes and nephrogenic diabetes insipidus as examples to highlight this topic. We discuss current published findings, some unanswered questions and propose topics for future research

    Cognitive disorders in patients with chronic kidney disease: specificities of clinical assessment (Nephrol Dial Transplant DOI: 10.1093/ndt/gfab262)

    No full text
    Publisher Copyright: © The Author(s) 2022.In the originally published version of this manuscript, the co-author’s name read “Bachman” instead of “Bachmann”. This error has now been corrected online.publishersversionpublishe

    Albuminuria as a risk factor for mild cognitive impairment and dementia-what is the evidence?

    No full text
    Kidney dysfunction can profoundly influence many organ systems, and recent evidence suggests a potential role for increased albuminuria in the development of mild cognitive impairment (MCI) or dementia. Epidemiological studies conducted in different populations have demonstrated that the presence of increased albuminuria is associated with a higher relative risk of MCI or dementia both in cross-sectional analyses and in studies with long-term follow-up. The underlying pathophysiological mechanisms of albuminuria's effect are as yet insufficiently studied, with several important knowledge gaps still present in a complex relationship with other MCI and dementia risk factors. Both the kidney and the brain have microvascular similarities that make them sensitive to endothelial dysfunction involving different mechanisms, including oxidative stress and inflammation. The exact substrate of MCI and dementia is still under investigation, however available experimental data indicate that elevated albuminuria and low glomerular filtration rate are associated with significant neuroanatomical declines in hippocampal function and grey matter volume. Thus, albuminuria may be critical in the development of cognitive impairment and its progression to dementia. In this review, we summarize the available evidence on albuminuria's link to MCI and dementia, point to existing gaps in our knowledge and suggest actions to overcome them. The major question of whether interventions that target increased albuminuria could prevent cognitive decline remains unanswered. Our recommendations for future research are aimed at helping to plan clinical trials and to solve the complex conundrum outlined in this review, with the ultimate goal of improving the lives of patients with chronic kidney disease

    Drugs with a negative impact on cognitive functions (Part 2): drug classes to consider while prescribing in CKD patients

    Get PDF
    There is growing evidence that chronic kidney disease (CKD) is an independent risk factor for cognitive impairment, especially due to vascular damage, blood-brain barrier disruption and uremic toxins. Given the presence of multiple comorbidities, the medication regimen of CKD patients often becomes very complex. Several medications such as psychotropic agents, drugs with anticholinergic properties, GABAergic drugs, opioids, corticosteroids, antibiotics and others have been linked to negative effects on cognition. These drugs are frequently included in the treatment regimen of CKD patients. The first review of this series described how CKD could represent a risk factor for adverse drug reactions affecting the central nervous system. This second review will describe some of the most common medications associated with cognitive impairment (in the general population and in CKD) and describe their effects

    Acidosis, cognitive dysfunction and motor impairments in patients with kidney disease

    No full text
    Metabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10-30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD

    Brain dysfunction in tubular and tubulointerstitial kidney diseases

    No full text
    Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a decreased GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue we selected a group of primary tubular diseases with preserved GFR in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen Bartter and Gitelman syndromes and nephrogenic diabetes insipidus as examples to highlight this topic. We discuss current published findings, some unanswered questions and propose topics for future research
    corecore