288 research outputs found

    The Role of preferences in logic programming: nonmonotonic reasoning, user preferences, decision under uncertainty

    Get PDF
    Intelligent systems that assist users in fulfilling complex tasks need a concise and processable representation of incomplete and uncertain information. In order to be able to choose among different options, these systems also need a compact and processable representation of the concept of preference. Preferences can provide an effective way to choose the best solutions to a given problem. These solutions can represent the most plausible states of the world when we model incomplete information, the most satisfactory states of the world when we express user preferences, or optimal decisions when we make decisions under uncertainty. Several domains, such as, reasoning under incomplete and uncertain information, user preference modeling, and qualitative decision making under uncertainty, have benefited from advances on preference representation. In the literature, several symbolic approaches of nonclassical reasoning have been proposed. Among them, logic programming under answer set semantics offers a good compromise between symbolic representation and computation of knowledge and several extensions for handling preferences. Nevertheless, there are still some open issues to be considered in logic programming. In nonmonotonic reasoning, first, most approaches assume that exceptions to logic program rules are already specified. However, sometimes, it is possible to consider implicit preferences based on the specificity of the rules to handle incomplete information. Secondly, the joint handling of exceptions and uncertainty has received little attention: when information is uncertain, the selection of default rules can be a matter of explicit preferences and uncertainty. In user preference modeling, although existing logic programming specifications allow to express user preferences which depend both on incomplete and contextual information, in some applications, some preferences in some context may be more important than others. Furthermore, more complex preference expressions need to be supported. In qualitative decision making under uncertainty, existing logic programming-based methodologies for making decisions seem to lack a satisfactory handling of preferences and uncertainty. The aim of this dissertation is twofold: 1) to tackle the role played by preferences in logic programming from different perspectives, and 2) to contribute to this novel field by proposing several frameworks and methods able to address the above issues. To this end, we will first show how preferences can be used to select default rules in logic programs in an implicit and explicit way. In particular, we propose (i) a method for selecting logic program rules based on specificity, and (ii) a framework for selecting uncertain default rules based on explicit preferences and the certainty of the rules. Then, we will see how user preferences can be modeled and processed in terms of a logic program (iii) in order to manage user profiles in a context-aware system and (iv) in order to propose a framework for the specification of nested (non-flat) preference expressions. Finally, in the attempt to bridge the gap between logic programming and qualitative decision under uncertainty, (v) we propose a classical- and a possibilistic-based logic programming methodology to compute an optimal decision when uncertainty and preferences are matters of degrees.Els sistemes intel.ligents que assisteixen a usuaris en la realització de tasques complexes necessiten una representació concisa i formal de la informació que permeti un raonament nomonòton en condicions d’incertesa. Per a poder escollir entre les diferents opcions, aquests sistemes solen necessitar una representació del concepte de preferència. Les preferències poden proporcionar una manera efectiva de triar entre les millors solucions a un problema. Aquestes solucions poden representar els estats del món més plausibles quan es tracta de modelar informació incompleta, els estats del món més satisfactori quan expressem preferències de l’usuari, o decisions òptimes quan estem parlant de presa de decisió incorporant incertesa. L’ús de les preferències ha beneficiat diferents dominis, com, el raonament en presència d’informació incompleta i incerta, el modelat de preferències d’usuari, i la presa de decisió sota incertesa. En la literatura, s’hi troben diferents aproximacions al raonament no clàssic basades en una representació simbòlica de la informació. Entre elles, l’enfocament de programació lògica, utilitzant la semàntica de answer set, ofereix una bona aproximació entre representació i processament simbòlic del coneixement, i diferents extensions per gestionar les preferències. No obstant això, en programació lògica es poden identificar diferents problemes pel que fa a la gestió de les preferències. Per exemple, en la majoria d’enfocaments de raonament no-monòton s’assumeix que les excepcions a default rules d’un programa lògic ja estan expressades. Però de vegades es poden considerar preferències implícites basades en l’especificitat de les regles per gestionar la informació incompleta. A més, quan la informació és també incerta, la selecció de default rules pot dependre de preferències explícites i de la incertesa. En el modelatge de preferències del usuari, encara que els formalismes existents basats en programació lògica permetin expressar preferències que depenen d’informació contextual i incompleta, en algunes aplicacions, donat un context, algunes preferències poden ser més importants que unes altres. Per tant, resulta d’interès un llenguatge que permeti capturar preferències més complexes. En la presa de decisions sota incertesa, les metodologies basades en programació lògica creades fins ara no ofereixen una solució del tot satisfactòria pel que fa a la gestió de les preferències i la incertesa. L’objectiu d’aquesta tesi és doble: 1) estudiar el paper de les preferències en la programació lògica des de diferents perspectives, i 2) contribuir a aquesta jove àrea d’investigació proposant diferents marcs teòrics i mètodes per abordar els problemes anteriorment citats. Per a aquest propòsit veurem com les preferències es poden utilitzar de manera implícita i explícita per a la selecció de default rules proposant: (i) un mètode basat en l’especificitat de les regles, que permeti seleccionar regles en un programa lògic; (ii) un marc teòric per a la selecció de default rules incertes basat en preferències explícites i la incertesa de les regles. També veurem com les preferències de l’usuari poden ser modelades i processades usant un enfocament de programació lògica (iii) que suporti la creació d’un mecanisme de gestió dels perfils dels usuaris en un sistema amb reconeixement del context; (iv) que permeti proposar un marc teòric capaç d’expressar preferències amb fòrmules imbricades. Per últim, amb l’objectiu de disminuir la distància entre programació lògica i la presa de decisió amb incertesa proposem (v) una metodologia basada en programació lògica clàssica i en una extensió de la programació lògica que incorpora lògica possibilística per modelar un problema de presa de decisions i per inferir una decisió òptima.Los sistemas inteligentes que asisten a usuarios en tareas complejas necesitan una representación concisa y procesable de la información que permita un razonamiento nomonótono e incierto. Para poder escoger entre las diferentes opciones, estos sistemas suelen necesitar una representación del concepto de preferencia. Las preferencias pueden proporcionar una manera efectiva para elegir entre las mejores soluciones a un problema. Dichas soluciones pueden representar los estados del mundo más plausibles cuando hablamos de representación de información incompleta, los estados del mundo más satisfactorios cuando hablamos de preferencias del usuario, o decisiones óptimas cuando estamos hablando de toma de decisión con incertidumbre. El uso de las preferencias ha beneficiado diferentes dominios, como, razonamiento en presencia de información incompleta e incierta, modelado de preferencias de usuario, y toma de decisión con incertidumbre. En la literatura, distintos enfoques simbólicos de razonamiento no clásico han sido creados. Entre ellos, la programación lógica con la semántica de answer set ofrece un buen acercamiento entre representación y procesamiento simbólico del conocimiento, y diferentes extensiones para manejar las preferencias. Sin embargo, en programación lógica se pueden identificar diferentes problemas con respecto al manejo de las preferencias. Por ejemplo, en la mayoría de enfoques de razonamiento no-monótono se asume que las excepciones a default rules de un programa lógico ya están expresadas. Pero, a veces se pueden considerar preferencias implícitas basadas en la especificidad de las reglas para manejar la información incompleta. Además, cuando la información es también incierta, la selección de default rules pueden depender de preferencias explícitas y de la incertidumbre. En el modelado de preferencias, aunque los formalismos existentes basados en programación lógica permitan expresar preferencias que dependen de información contextual e incompleta, in algunas aplicaciones, algunas preferencias en un contexto puede ser más importantes que otras. Por lo tanto, un lenguaje que permita capturar preferencias más complejas es deseable. En la toma de decisiones con incertidumbre, las metodologías basadas en programación lógica creadas hasta ahora no ofrecen una solución del todo satisfactoria al manejo de las preferencias y la incertidumbre. El objectivo de esta tesis es doble: 1) estudiar el rol de las preferencias en programación lógica desde diferentes perspectivas, y 2) contribuir a esta joven área de investigación proponiendo diferentes marcos teóricos y métodos para abordar los problemas anteriormente citados. Para este propósito veremos como las preferencias pueden ser usadas de manera implícita y explícita para la selección de default rules proponiendo: (i) un método para seleccionar reglas en un programa basado en la especificad de las reglas; (ii) un marco teórico para la selección de default rules basado en preferencias explícitas y incertidumbre. También veremos como las preferencias del usuario pueden ser modeladas y procesadas usando un enfoque de programación lógica (iii) para crear un mecanismo de manejo de los perfiles de los usuarios en un sistema con reconocimiento del contexto; (iv) para crear un marco teórico capaz de expresar preferencias con formulas anidadas. Por último, con el objetivo de disminuir la distancia entre programación lógica y la toma de decisión con incertidumbre proponemos (v) una metodología para modelar un problema de toma de decisiones y para inferir una decisión óptima usando un enfoque de programación lógica clásica y uno de programación lógica extendida con lógica posibilística.Sistemi intelligenti, destinati a fornire supporto agli utenti in processi decisionali complessi, richiedono una rappresentazione dell’informazione concisa, formale e che permetta di ragionare in maniera non monotona e incerta. Per poter scegliere tra le diverse opzioni, tali sistemi hanno bisogno di disporre di una rappresentazione del concetto di preferenza altrettanto concisa e formale. Le preferenze offrono una maniera efficace per scegliere le miglior soluzioni di un problema. Tali soluzioni possono rappresentare gli stati del mondo più credibili quando si tratta di ragionamento non monotono, gli stati del mondo più soddisfacenti quando si tratta delle preferenze degli utenti, o le decisioni migliori quando prendiamo una decisione in condizioni di incertezza. Diversi domini come ad esempio il ragionamento non monotono e incerto, la strutturazione del profilo utente, e i modelli di decisione in condizioni d’incertezza hanno tratto beneficio dalla rappresentazione delle preferenze. Nella bibliografia disponibile si possono incontrare diversi approcci simbolici al ragionamento non classico. Tra questi, la programmazione logica con answer set semantics offre un buon compromesso tra rappresentazione simbolica e processamento dell’informazione, e diversi estensioni per la gestione delle preferenze sono state proposti in tal senso. Nonostante ció, nella programmazione logica esistono ancora delle problematiche aperte. Prima di tutto, nella maggior parte degli approcci al ragionamento non monotono, si suppone che nel programma le eccezioni alle regole siano già specificate. Tuttavia, a volte per trattare l’informazione incompleta è possibile prendere in considerazione preferenze implicite basate sulla specificità delle regole. In secondo luogo, la gestione congiunta di eccezioni e incertezza ha avuto scarsa attenzione: quando l’informazione è incerta, la scelta di default rule può essere una questione di preferenze esplicite e d’incertezza allo stesso tempo. Nella creazione di preferenze dell’utente, anche se le specifiche di programmazione logica esistenti permettono di esprimere preferenze che dipendono sia da un’informazione incompleta che da una contestuale, in alcune applicazioni talune preferenze possono essere più importanti di altre, o espressioni più complesse devono essere supportate. In un processo decisionale con incertezza, le metodologie basate sulla programmazione logica viste sinora, non offrono una gestione soddisfacente delle preferenze e dell’incertezza. Lo scopo di questa dissertazione è doppio: 1) chiarire il ruolo che le preferenze giocano nella programmazione logica da diverse prospettive e 2) contribuire proponendo in questo nuovo settore di ricerca, diversi framework e metodi in grado di affrontare le citate problematiche. Per prima cosa, dimostreremo come le preferenze possono essere usate per selezionare default rule in un programma in maniera implicita ed esplicita. In particolare proporremo: (i) un metodo per la selezione delle regole di un programma logico basato sulla specificità dell’informazione; (ii) un framework per la selezione di default rule basato sulle preferenze esplicite e sull’incertezza associata alle regole del programma. Poi, vedremo come le preferenze degli utenti possono essere modellate attraverso un programma logico, (iii) per creare il profilo dell’utente in un sistema context-aware, e (iv) per proporre un framework che supporti la definizione di preferenze complesse. Infine, per colmare le lacune in programmazione logica applicata a un processo di decisione con incertezza (v) proporremo una metodologia basata sulla programmazione logica classica e una metodologia basata su un’estensione della programmazione logica con logica possibilistica

    Towards the implementation of a preference-and uncertain-aware solver using answer set programming

    Get PDF
    Logic programs with possibilistic ordered disjunction (or LPPODs) are a recently defined logic-programming framework based on logic programs with ordered disjunction and possibilistic logic. The framework inherits the properties of such formalisms and merging them, it supports a reasoning which is nonmonotonic, preference-and uncertain-aware. The LPPODs syntax allows to specify 1) preferences in a qualitative way, and 2) necessity values about the certainty of program clauses. As a result at semantic level, preferences and necessity values can be used to specify an order among program solutions. This class of program therefore fits well in the representation of decision problems where a best option has to be chosen taking into account both preferences and necessity measures about information. In this paper we study the computation and the complexity of the LPPODs semantics and we describe the algorithm for its implementation following on Answer Set Programming approach. We describe some decision scenarios where the solver can be used to choose the best solutions by checking whether an outcome is possibilistically preferred over another considering preferences and uncertainty at the same time.Postprint (published version

    On the Multiple Roles of Ontologies in Explainable AI

    Get PDF
    This paper discusses the different roles that explicit knowledge, in particular ontologies, can play in Explainable AI and in the development of human-centric explainable systems and intelligible explanations. We consider three main perspectives in which ontologies can contribute significantly, namely reference modelling, common-sense reasoning, and knowledge refinement and complexity management. We overview some of the existing approaches in the literature, and we position them according to these three proposed perspectives. The paper concludes by discussing what challenges still need to be addressed to enable ontology-based approaches to explanation and to evaluate their human-understandability and effectiveness

    Blending under deconstruction

    Get PDF
    n/

    On the Multiple Roles of Ontologies in Explainable AI

    Get PDF
    This paper discusses the different roles that explicit knowledge, in particular ontologies, can play in Explainable AI and in the development of human-centric explainable systems and intelligible explanations. We consider three main perspectives in which ontologies can contribute significantly, namely reference modelling, common-sense reasoning, and knowledge refinement and complexity management. We overview some of the existing approaches in the literature, and we position them according to these three proposed perspectives. The paper concludes by discussing what challenges still need to be addressed to enable ontology-based approaches to explanation and to evaluate their human-understandability and effectiveness

    Two Approaches to Ontology Aggregation Based on Axiom Weakening

    Get PDF
    Axiom weakening is a novel technique that allows for fine-grained repair of inconsistent ontologies. In a multi-agent setting, integrating ontologies corresponding to multiple agents may lead to inconsistencies. Such inconsistencies can be resolved after the integrated ontology has been built, or their generation can be prevented during ontology generation. We implement and compare these two approaches. First, we study how to repair an inconsistent ontology resulting from a voting-based aggregation of views of heterogeneous agents. Second, we prevent the generation of inconsistencies by letting the agents engage in a turn-based rational protocol about the axioms to be added to the integrated ontology. We instantiate the two approaches using real-world ontologies and compare them by measuring the levels of satisfaction of the agents w.r.t. the ontology obtained by the two procedures

    An operational framework for guiding human evaluation in Explainable and Trustworthy AI

    Get PDF
    The assessment of explanations by humans presents a significant challenge within the context of Explainable and Trustworthy AI. This is attributed not only to the absence of universal metrics and standardized evaluation methods, but also to complexities tied to devising user studies that assess the perceived human comprehensibility of these explanations. To address this gap, we introduce a survey-based methodology for guiding the human evaluation of explanations. This approach amalgamates leading practices from existing literature and is implemented as an operational framework. This framework assists researchers throughout the evaluation process, encompassing hypothesis formulation, online user study implementation and deployment, and analysis and interpretation of collected data. The application of this framework is exemplified through two practical user studies.The authors would like to thank Marzo Zenere for the implementation of the Python wizard during his MSc thesis. This work is supported by MCIN/AEI/10.13039/501100011033 (grants PID2021-123152OB-C21, TED2021-130295BC33 and RED2022-134315-T) and the Galician Ministry of Culture, Education, Professional Training and University (grants ED431G2019/04 and ED431C2022/19 which are co-funded by the ERDF/FEDER program).S

    Nested logic programs with ordered disjunction

    Get PDF
    In this paper we define a class of nested logic programs, nested logic programs with ordered disjunction (LPODs+), which allows to specify qualitative preferences by means of nested preference expressions. For doing this we extend the syntax of logic programs with ordered disjunction (LPODs) to capture more general expressions. We define the LPODs+ semantics in a simple way and we extend most of the results of logic programs with ordered disjunction showing how our approach effectively is a proper generalisation of LPODs.Peer ReviewedPostprint (published version

    Rebag-Ware: Reputation-based Governance of Public Works

    Get PDF
    Reputation-based Governance (Rebag) is a framework to address governance problems that hinges on the reputation of the relevant actors. It functions thanks to an appropriate Web-based information system that encompasses the concept of Internet-based Reputation System, of which eBay represents an example. Rebag-Ware is a demonstrator of such an information system, showing an application of the proposed governance model to the management of public works. Rebag provides strong incentives to the actors of governance to behave efficiently and honestly. It allows for the computation of routine statistics that are used to fight corruption. Also, it allows for very advanced forms of public involvement that include participative planning and budgeting. In the paper, Rebag-Ware 1.0 is used to show some of the characteristics of the proposed model of governance. The site of the project is http://www.rebag.it. Rebag-Ware can be accessed at: http://fire.ei.unibo.it:8080/rebagware/
    corecore