186 research outputs found

    The Great Debate at 'Immunotherapy Bridge', Naples, December 5, 2019

    Get PDF
    As part of the 2019 Immunotherapy Bridge congress (December 4–5, Naples, Italy), the Great Debate session featured counterpoint views from leading experts on six topical issues in immunotherapy today. These were the use of chimeric antigen receptor T cell therapy in solid tumors, whether the Immunoscore should be more widely used in clinical practice, whether antibody-dependent cellular cytotoxicity is important in the mode of action of anticytotoxic T-lymphocyte-associated protein 4 antibodies, whether the brain is immunologically unique or just another organ, the role of microbiome versus nutrition in affecting responses to immunotherapy, and whether chemotherapy is immunostimulatory or immunosuppressive. Discussion of these important topics are summarized in this report

    Immunoregulatory effects of AFP domains on monocyte-derived dendritic cell function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alpha-fetoprotein (AFP) is a tumor-associated glycoprotein that functions in regulation of both ontogenic and oncogenic growth. Recent study showed that AFP can induce apoptosis or impair monocyte-derived dendritic cell (MDDC) function. However, it is still unclear which AFP domain (D-AFP) plays major role in this function.</p> <p>Results</p> <p>As expected monocytes cultured in the presence of Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and Interleukin-4 (IL-4) developed into MDDC. Up-regulation of HLA-DR and CD11c as well as loss of CD14 molecules could be observed. Full length AFP (FL-AFP), domain 2 AFP (D2-AFP) and D3-AFP, but not D1-AFP, significantly inhibited the expression of HLA-DR<sup>high</sup>/CD11c<sup>high </sup>and CD80<sup>+</sup>/CD86<sup>high </sup>molecules. In contrast, CD83 expression was substantially down-regulated in all samples. Expression of CD40 was significantly suppressed by FL-AFP but not by any D-AFPs. Finally, both FL-AFP and D-AFP impaired the MDDC ability to secrete IL-12 (p70).</p> <p>Conclusions</p> <p>D2- and D3- but not D1-AFP extensively suppresses the MDDC function. All the recombinant AFP proteins impaired the ability of MDDC to secrete IL-12.</p

    The structure and dynamic properties of the complete histidine phosphotransfer domain of the chemotaxis specific histidine autokinase CheA from Thermotoga maritima

    Get PDF
    The bacterial histidine autokinase CheA contains a histidine phosphotransfer (Hpt) domain that accepts a phosphate from the catalytic domain and donates the phosphate to either target response regulator protein, CheY or CheB. The Hpt domain forms a helix-bundle structure with a conserved four-helix bundle motif and a variable fifth helix. Observation of two nearly equally populated conformations in the crystal structure of a Hpt domain fragment of CheA from Thermotoga maritima containing only the first four helices suggests more mobility in a tightly packed helix bundle structure than previously thought. In order to examine how the structures of Hpt domain homologs may differ from each other particularly in the conformation of the last helix, and whether an alternative conformation exists in the intact Hpt domain in solution, we have solved a high-resolution, solution structure of the CheA Hpt from T. maritima and characterized the backbone dynamics of this protein. The structure contains a four-helix bundle characteristic of histidine phosphotransfer domains. The position and orientation of the fifth helix resembles those in known Hpt domain crystal and solution structures in other histidine kinases. The alternative conformation that was reported in the crystal structure of the CheA Hpt from T. maritima missing the fifth helix is not detected in the solution structure, suggesting a role for the fifth helix in providing stabilizing forces to the overall structure

    Systematic review of reduced therapy regimens for children with low risk febrile neutropenia

    Get PDF
    PURPOSE: Reduced intensity therapy for children with low-risk febrile neutropenia may provide benefits to both patients and the health service. We have explored the safety of these regimens and the effect of timing of discharge. METHODS: Multiple electronic databases, conference abstracts and reference lists were searched. Randomised controlled trials (RCT) and prospective observational cohorts examining the location of therapy and/or the route of administration of antibiotics in people younger than 18 years who developed low-risk febrile neutropenia following treatment for cancer were included. Meta-analysis using a random effects model was conducted. I (2) assessed statistical heterogeneity not due to chance. Registration: PROSPERO (CRD42014005817). RESULTS: Thirty-seven studies involving 3205 episodes of febrile neutropenia were included; 13 RCTs and 24 prospective observational cohorts. Four safety events (two deaths, two intensive care admissions) occurred. In the RCTs, the odds ratio for treatment failure (persistence, worsening or recurrence of fever/infecting organisms, antibiotic modification, new infections, re-admission, admission to critical care or death) with outpatient treatment was 0.98 (95% confidence interval (95%CI) 0.44-2.19, I (2) = 0 %) and with oral treatment was 1.05 (95%CI 0.74-1.48, I (2) = 0 %). The estimated risk of failure using outpatient therapy from all prospective data pooled was 11.2 % (95%CI 9.7-12.8 %, I (2) = 77.2 %) and using oral antibiotics was 10.5 % (95%CI 8.9-12.3 %, I (2) = 78.3 %). The risk of failure was higher when reduced intensity therapies were used immediately after assessment, with lower rates when these were introduced after 48 hours. CONCLUSIONS: Reduced intensity therapy for specified groups is safe with low rates of treatment failure. Services should consider how these can be acceptably implemented

    Direct susceptibility testing for multi drug resistant tuberculosis: A meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the challenges facing the tuberculosis (TB) control programmes in resource-limited settings is lack of rapid techniques for detection of drug resistant TB, particularly multi drug resistant tuberculosis (MDR TB). Results obtained with the conventional indirect susceptibility testing methods come too late to influence a timely decision on patient management. More rapid tests directly applied on sputum samples are needed. This study compared the sensitivity, specificity and time to results of four direct drug susceptibility testing tests with the conventional indirect testing for detection of resistance to rifampicin and isoniazid in <it>M. tuberculosis</it>. The four direct tests included two in-house phenotypic assays – Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS), and two commercially available tests – Genotype<sup>® </sup>MTBDR and Genotype<sup>® </sup>MTBDR<it>plus </it>(Hain Life Sciences, Nehren, Germany).</p> <p>Methods</p> <p>A literature review and meta-analysis of study reports was performed. The Meta-Disc software was used to analyse the reports and tests for sensitivity, specificity, and area under the summary receiver operating characteristic (sROC) curves. Heterogeneity in accuracy estimates was tested with the Spearman correlation coefficient and Chi-square.</p> <p>Results</p> <p>Eighteen direct DST reports were analysed: NRA – 4, MODS- 6, Genotype MTBDR<sup>® </sup>– 3 and Genotype<sup>® </sup>MTBDR<it>plus </it>– 5. The pooled sensitivity and specificity for detection of resistance to rifampicin were 99% and 100% with NRA, 96% and 96% with MODS, 99% and 98% with Genotype<sup>® </sup>MTBDR, and 99% and 99% with the new Genotype<sup>® </sup>MTBDR<it>plus</it>, respectively. For isoniazid it was 94% and 100% for NRA, 92% and 96% for MODS, 71% and 100% for Genotype<sup>® </sup>MTBDR, and 96% and 100% with the Genotype<sup>® </sup>MTBDR<it>plus</it>, respectively. The area under the summary receiver operating characteristic (sROC) curves was in ranges of 0.98 to 1.00 for all the four tests. Molecular tests were completed in 1 – 2 days and also the phenotypic assays were much more rapid than conventional testing.</p> <p>Conclusion</p> <p>Direct testing of rifampicin and isoniazid resistance in <it>M. tuberculosis </it>was found to be highly sensitive and specific, and allows prompt detection of MDR TB.</p

    The EHEC Type III Effector NleL Is an E3 Ubiquitin Ligase That Modulates Pedestal Formation

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and may result in potentially fatal hemolytic uremia syndrome in humans. EHEC colonize the intestinal mucosa and promote the formation of actin-rich pedestals via translocated type III effectors. Two EHEC type III secreted effectors, Tir and EspFu/TccP, are key players for pedestal formation. We discovered that an EHEC effector protein called Non-LEE-encoded Ligase (NleL) is an E3 ubiquitin ligase. In vitro, we showed that the NleL C753 residue is critical for its E3 ligase activity. Functionally, we demonstrated that NleL E3 ubiquitin ligase activity is involved in modulating Tir-mediated pedestal formation. Surprisingly, EHEC mutant strain deficient in the E3 ligase activity induced more pedestals than the wild-type strain. The canonical EPEC strain E2348/69 normally lacks the nleL gene, and the ectopic expression of the wild-type EHEC nleL, but not the catalytically-deficient nleL(C753A) mutant, in this strain resulted in fewer actin-rich pedestals. Furthermore, we showed that the C. rodentium NleL homolog is a E3 ubiquitin ligase and is required for efficient infection of murine colonic epithelial cells in vivo. In summary, our study demonstrated that EHEC utilizes NleL E3 ubiquitin ligase activity to modulate Tir-mediated pedestal formation.National Institutes of Health (U.S.) (grant AI078092)National Institutes of Health (U.S.) (grant AI068655

    Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector

    Get PDF
    Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of “metaeffector,” a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein

    GogB Is an Anti-Inflammatory Effector that Limits Tissue Damage during Salmonella Infection through Interaction with Human FBXO22 and Skp1

    Get PDF
    Bacterial pathogens often manipulate host immune pathways to establish acute and chronic infection. Many Gram-negative bacteria do this by secreting effector proteins through a type III secretion system that alter the host response to the pathogen. In this study, we determined that the phage-encoded GogB effector protein in Salmonella targets the host SCF E3 type ubiquitin ligase through an interaction with Skp1 and the human F-box only 22 (FBXO22) protein. Domain mapping and functional knockdown studies indicated that GogB-containing bacteria inhibited IκB degradation and NFκB activation in macrophages, which required Skp1 and a eukaryotic-like F-box motif in the C-terminal domain of GogB. GogB-deficient Salmonella were unable to limit NFκB activation, which lead to increased proinflammatory responses in infected mice accompanied by extensive tissue damage and enhanced colonization in the gut during long-term chronic infections. We conclude that GogB is an anti-inflammatory effector that helps regulate inflammation-enhanced colonization by limiting tissue damage during infection

    Structural and Sequence Analysis of Imelysin-Like Proteins Implicated in Bacterial Iron Uptake

    Get PDF
    Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution), have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function

    NleG Type 3 Effectors from Enterohaemorrhagic Escherichia coli Are U-Box E3 Ubiquitin Ligases

    Get PDF
    NleG homologues constitute the largest family of type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9′ family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56±2 µM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes
    corecore