137 research outputs found

    Diagnosis of enteric fever in the emergency department: a retrospective study from Pakistan

    Get PDF
    Background:Enteric fever is one of the top differential diagnoses of fever in many parts of the world. Generally, the diagnosis is suspected and treatment is initiated based on clinical and basic laboratory parameters.Aims: The present study identifies the clinical and laboratory parameters predicting enteric fever in Patients visiting the emergency department of a tertiary care hospital in Pakistan.Methods:This is a retrospective chart review of all adult Patients with clinically suspected enteric fever admitted to the hospital through the emergency department during a 5-year period (2000-2005).Results:A total of 421 emergency department Patients were admitted to the hospital with suspected enteric fever. There were 53 cases of blood culture-positive enteric fever and 296 disease-negative cases on culture. The mean age in the blood culture-positive group was 27 years (SD: 10) and in the group with negative blood culture for enteric fever, 35 years (SD: 15) with a male to female ratio of 1:0.6 in both groups. Less than half (48%) of all Patients admitted with suspected enteric fever had the discharge diagnosis of enteric fever, of which only 13% of the Patients had blood culture/serologically confirmed enteric fever. None of the common clinical and laboratory parameters differed between enteric fever-positive Patients and those without it.Conclusion:Commonly cited clinical and laboratory parameters were not able to predict enteric fever

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    The effect of exposure to synthetic pheromone lures on male Zygaena filipendulae mating behaviour: implications for monitoring species of conservation interest

    Get PDF
    Pheromone based monitoring of insects of conservation value has the potential to revolutionise the way in which surveys are carried out. However, due to their effective use in pest management, concerns have been raised about potential negative effects of pheromone exposure on populations of rare insects. The effect of exposure to synthetic pheromone lures on male mating behaviour was examined in laboratory and field conditions using the six spot burnet moth Zygaena filipendulae (Linnaeus, 1758). For the laboratory experiment larvae were collected and cultured separately under controlled conditions. Virgin males were exposed to a synthetic pheromone lure for 24 h; then tested for responsiveness immediately after this exposure, 1 and 24 h later. Control males were tested three times: initially, 1 h later and 24 h later. The time taken for males to detect females, shown by exposure of their anal claspers, and the time taken for males to locate females were recorded. No significant difference was found between the time taken for control and exposed males to detect or locate females, and no significant difference between the proportions of males that successfully located females in exposed and control groups was found. In the field experiment the time males spent in the presence of contained females, both with and without a pheromone lure present, was recorded. Males spent more time in the presence of the females when the pheromone lure was present. Both experiments indicate male Z. filipendulae mating behaviour is not adversely affected by exposure to synthetic pheromone lures

    In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists

    Get PDF
    GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs

    Subtle effects of environmental stress observed in the early life stages of the Common frog, Rana temporaria

    Get PDF
    Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue ‘fingerprint’ in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection- Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism

    Selective P2X7 receptor antagonists for chronic inflammation and pain

    Get PDF
    ATP, acting on P2X7 receptors, stimulates changes in intracellular calcium concentrations, maturation, and release of interleukin-1β (IL-1β), and following prolonged agonist exposure, cell death. The functional effects of P2X7 receptor activation facilitate several proinflammatory processes associated with arthritis. Within the nervous system, these proinflammatory processes may also contribute to the development and maintenance of chronic pain. Emerging data from genetic knockout studies have indicated specific roles for P2X7 receptors in inflammatory and neuropathic pain states. The discovery of multiple distinct chemical series of potent and highly selective P2X7 receptor antagonists have enhanced our understanding of P2X7 receptor pharmacology and the diverse array of P2X7 receptor signaling mechanisms. These antagonists have provided mechanistic insight into the role(s) P2X7 receptors play under pathophysiological conditions. In this review, we integrate the recent discoveries of novel P2X7 receptor-selective antagonists with a brief update on P2X7 receptor pharmacology and its therapeutic potential

    Rodent Models of TDP-43 Proteinopathy: Investigating the Mechanisms of TDP-43-Mediated Neurodegeneration

    Get PDF
    Since the identification of phosphorylated and truncated transactive response DNA-binding protein 43 (TDP-43) as a primary component of ubiquitinated inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions, much effort has been directed towards ascertaining how TDP-43 contributes to the pathogenesis of disease. As with other protein misfolding disorders, TDP-43-mediated neuronal death is likely caused by both a toxic gain and loss of TDP-43 function. Indeed, the presence of cytoplasmic TDP-43 inclusions is associated with loss of nuclear TDP-43. Moreover, post-translational modifications of TDP-43, including phosphorylation, ubiquitination, and cleavage into C-terminal fragments, may bestow toxic properties upon TDP-43 and cause TDP-43 dysfunction. However, the exact neurotoxic TDP-43 species remain unclear, as do the mechanism(s) by which they cause neurotoxicity. Additionally, given our incomplete understanding of the roles of TDP-43, both in the nucleus and the cytoplasm, it is difficult to truly appreciate the detrimental consequences of aberrant TDP-43 function. The development of TDP-43 transgenic animal models is expected to narrow these gaps in our knowledge. The aim of this review is to highlight the key findings emerging from TDP-43 transgenic animal models and the insight they provide into the mechanisms driving TDP-43-mediated neurodegeneration

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability

    Divergence in transcriptional and regulatory responses to mating in male and female fruitflies

    Get PDF
    Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness

    Exon-Level Transcriptome Profiling in Murine Breast Cancer Reveals Splicing Changes Specific to Tumors with Different Metastatic Abilities

    Get PDF
    In breast cancer patients, tumor metastases at distant sites are the main cause of death. However, the molecular mechanisms of metastasis of breast cancer remain unclear. It is thought that changes occurring at the level of RNA processing contribute to cancer. Alternative splicing (AS) of pre-mRNA, a key post-transcriptional mechanism allowing for the production of distinct proteins from a single gene, affects over 90% of human genes. Such splicing events are responsible for generating mRNAs that encode protein isoforms that can have very different biological properties and functions. A well-studied example is the BCL-X gene, whose two major transcript isoforms produce two proteins having antagonistic functions: the short form (BCL-XS) promotes apoptosis while the long form (BCL-XL) is anti-apoptotic. Moreover, overexpression of BCL-XL has been reported to enhance the metastatic potential of breast tumor cells in patients
    corecore